Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In den Azetylenflaschen befindet sich neben der porösen Masse Azeton als Lösungo mittel für Azetylen. Das Azeton hat dabei zunächst den Zweck, daß auch bei ver hältnismäßig niedrigen Fülldrucken eine genügende Gasmenge in den Flaschen gespeichert werden kann. Es hat darüber hinaus aber auch die Eigenschaft, daß es die Selbstzersetzung des Azetylens sehr erheblich behindert. Dieser Effekt ist zu einem Teil dadurch zu erklären, daß während des Zerfalls des Azetylens gleich zeitig auch Azeton mit zersetzt wird, wobei ein nicht unerheblicher Energieanteil verbraucht wird. Weiterhin bedingt die bei der Azetylenabgabe aus der Lösung auftretende Abkühlung, die Verdampfung des Azetons sowie die Erhitzung des Azetondampfes bzw. seiner Spaltprodukte auf die Reaktionstemperatur einen zusätzlichen Energieverbrauch. Dadurch ergibt sich eine Erniedrigung der zu beobachtenden Zersetzungswärme [1] und damit der Reaktionst~mperatur. Gleichzeitig hat sich aber auch gezeigt, daß die bei der Zersetzung des Azetylens auftretenden Produkte wesentlich geändert werden. Die bisherigen Versuche über den Umsatz bei der Zersetzung von in Azeton gelöst::m Azetylen [1, 2, 3] ergaben nämlich trotz gewisser Unterschiede übereinstimmend, daß diese nur noch in geringem Umfang unter Zerfall in Wasserstoff und Kohlenstoff erfolgt. An Stelle des Wasserstoffes wird im wesentlichen Methan als Zerfallsprodukt gefunden. Daneben wird das Azeton zum großen Teil unter Bildung von Kohlenoxyd zer setzt, wobei zusätzlich weitere Mengen an Methan entstehen. Es ist möglich, daß dieser Reaktionsverlauf besonders auf die wesentlich niedrigere Temperatur des Vorganges zurückzuführen ist gegenüber der Zersetzung im reinen gasförmigen Azetylen.
Reines Acetylen stellt wegen seines exothermen Charakters ein explosibles Gas dar. Die Auslösung einer Explosion ist aber abgesehen von den Gefäßabmessun gen, in denen sich das Gas befindet, sehr wesentlich vom Druck und von den Zündbedingungen abhängig. So hat sich in einer sehr großen Zahl von Versuchen [1] gezeigt, daß das Gas unter normalen Zündbedingungen, z. B. durch Funken oder unter Durchschmelzen eines Drahtes, auch in größeren Räumen erst bei er höhten Drucken zur Explosion gebracht werden kann. Anders liegen die Verhältnisse, wenn besonders intensive Zündbedingungen zur Anwendung kommen. So kann in mit Acetylen gefüllten Rohren auch schon bei Drucken unter 1 Atm durch eine genügend brisante Sprengstoffladung im Acety len eine Detonation ausgelöst werden [2]. Sehr intensive Zündquellen stellen auch Stoßwellen oder Detonationswellen dar [3]. Zum Beispiel läßt sich in Acetylen eine durchgehende Zersetzung erreichen, indem in einem Rohrteil ein Acetylen Sauerstoff-Gemisch oder reines Acetylen unter höherem Druck zur Detonation gebracht wird [4]. Dieser Fall tritt in der Praxis verhältnismäßig leicht dann ein, wenn es an Autogen geräten zu einem Rücktreten des Acetylen-Sauerstoff-Gemisches in die Acetylen Zuführungsleitung kommt und das Acetylen-Sauerstoff-Gemisch irgendwie ge zündet wird. Diese Rückschläge führen unter Umständen dazu, daß sich die Detonation im sauerstoffhaltigen Teil der Geräte bzw. Leitungen auf den Acety len-Zuführungsschlauch überträgt und dort je nach den Bedingungen eventuell bis zur Acetylenflasche, dem Entwickler oder dem Acetylen-Verteilersystem in Form einer Detonation weiterläuft.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.