Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain's components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you'll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you'll learn-by-be doing, enhancing your career possibilities in today's rapidly evolving landscape.You will: Understand different types of LLMs and how to select the right ones for responsible AI. Structure effective prompts. Master LangChain concepts, such as chains, models, memory, and agents. Apply embeddings effectively for search, content comparison, and understanding similarity. Setup and integrate Pinecone vector database for indexing, structuring data, and search. Build Q & A applications for multiple doc formats. Develop multi-step AI workflow apps using LangChain agents.
Embrace emerging AI trends and integrate your operations with cutting-edge solutions Enterprise AI in the Cloud: A Practical Guide to Deploying End-to-End Machine Learning and ChatGPT Solutions is an indispensable resource for professionals and companies who want to bring new AI technologies like generative AI, ChatGPT, and machine learning (ML) into their suite of cloud-based solutions. If you want to set up AI platforms in the cloud quickly and confidently and drive your business forward with the power of AI, this book is the ultimate go-to guide. The author shows you how to start an enterprise-wide AI transformation effort, taking you all the way through to implementation, with clearly defined processes, numerous examples, and hands-on exercises. You'll also discover best practices on optimizing cloud infrastructure for scalability and automation.Enterprise AI in the Cloud helps you gain a solid understanding of: AI-First Strategy Adopt a comprehensive approach to implementing corporate AI systems in the cloud and at scale, using an AI-First strategy to drive innovation State-of-the-Art Use Cases: Learn from emerging AI/ML use cases, such as ChatGPT, VR/AR, blockchain, metaverse, hyper-automation, generative AI, transformer models, Keras, TensorFlow in the cloud, and quantum machine learning Platform Scalability and MLOps (ML Operations): Select the ideal cloud platform and adopt best practices on optimizing cloud infrastructure for scalability and automation AWS, Azure, Google ML: Understand the machine learning lifecycle, from framing problems to deploying models and beyond, leveraging the full power of Azure, AWS, and Google Cloud platforms AI-Driven Innovation Excellence: Get practical advice on identifying potential use cases, developing a winning AI strategy and portfolio, and driving an innovation culture Ethical and Trustworthy AI Mastery: Implement Responsible AI by avoiding common risks while maintaining transparency and ethics Scaling AI Enterprise-Wide: Scale your AI implementation using Strategic Change Management, AI Maturity Models, AI Center of Excellence, and AI Operating Model Whether you're a beginner or an experienced AI or MLOps engineer, business or technology leader, or an AI student or enthusiast, this comprehensive resource empowers you to confidently build and use AI models in production, bridging the gap between proof-of-concept projects and real-world AI deployments. With over 300 review questions, 50 hands-on exercises, templates, and hundreds of best practice tips to guide you through every step of the way, this book is a must-read for anyone seeking to accelerate AI transformation across their enterprise.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.