Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central ,,,,2, ,,,,, ,,,,, Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful.Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter and the number of references given at the end due to the publishing plan of this book that limits its size. Nevertheless, we gratefully acknowledge the contribution of all those authors whose names have been left out.Some knowledge in introductory algebra and college calculus is assumed throughout the book. Integration is extensively used in several chapters, and many results discussed in Part I (Chapters 1 to 9) of our book are used in this volume.Chapter 10 is on Inverse Gaussian distribution and its extensions. The Birnbaum-Saunders distribution and its extensions along with applications in actuarial sciences is discussed in Chapter 11. Chapter 12 discusses Pareto distribution and its extensions. The Laplace distribution and its applications in navigational errors is discussed in the next chapter. This is followed by central chi-squared distribution and its applications in statistical inference, bioinformatics and genomics. Chapter 15 discusses Student's ,,,, distribution, its extensions and applications in statistical inference. The ,,,, distribution and its applications in statistical inference appears next. Chapter 17 is on Weibull distribution and its applications in geology and reliability engineering. Next two chapters are on Rayleigh and Maxwell distributions and its applications in communications, wind energy modeling, kinetic gas theory, nuclear and thermal engineering, and physical chemistry. The last chapter is on Gumbel distribution, its applications in the law of rare exceedances.Suggestions for improvement are welcome. Please send them to rajan.chattamvelli@vit.ac.in.
This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, ,,,,2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are drawn from different fields. An up-to-date reference appears at the end of the book.Chapter 1 introduces the basic concepts on random variables, and gives a simple method to find the mean deviation (MD) of discrete distributions. The Bernoulli and binomial distributions are discussed in detail in Chapter 2. A short chapter on discrete uniform distribution appears next. The next two chapters are on geometric and negative binomial distributions. Chapter 6 discusses the Poisson distribution in-depth, including applications in various fields. Chapter 7 is on hypergeometric distribution. As most textbooks in the market either do not discuss, or contain only brief description of the negative hypergeometric distribution, we have included an entire chapter on it. A short chapter on logarithmic series distribution follows it, in which a theorem to find the kth moment of logarithmic distribution using (k-1)th moment of zero-truncated geometric distribution is presented. The last chapter is on multinomial distribution and its applications.The primary users of this book are professionals and practitioners in various fields of engineering and the applied sciences. It will also be of use to graduate students in statistics, research scholars in science disciplines, and teachers of statistics, biostatistics, biotechnology, education, and psychology.
This book provides the theoretical framework needed to build, analyze and interpret various statistical models. It helps readers choose the correct model, distinguish among various choices that best captures the data, or solve the problem at hand. This is an introductory textbook on probability and statistics.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.