Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Offering a unified exposition of calculus and classical real analysis, this textbook presents a meticulous introduction to single¿variable calculus. Throughout, the exposition makes a distinction between the intrinsic geometric definition of a notion and its analytic characterization, establishing firm foundations for topics often encountered earlier without proof. Each chapter contains numerous examples and a large selection of exercises, as well as a ¿Notes and Comments¿ section, which highlights distinctive features of the exposition and provides additional references to relevant literature.This second edition contains substantial revisions and additions, including several simplified proofs, new sections, and new and revised figures and exercises. A new chapter discusses sequences and series of real¿valued functions of a real variable, and their continuous counterpart: improper integrals depending on a parameter. Two new appendices cover a construction of the real numbers using Cauchy sequences, and a self¿contained proof of the Fundamental Theorem of Algebra.In addition to the usual prerequisites for a first course in single¿variable calculus, the reader should possess some mathematical maturity and an ability to understand and appreciate proofs. This textbook can be used for a rigorous undergraduate course in calculus, or as a supplement to a later course in real analysis. The authors¿ A Course in Multivariable Calculus is an ideal companion volume, offering a natural extension of the approach developed here to the multivariable setting.From reviews:[The first edition is] a rigorous, well-presented and original introduction to the core of undergraduate mathematics ¿ first-year calculus. It develops this subject carefully from a foundation of high-school algebra, with interesting improvements and insights rarely found in other books. [¿] This book is a tour de force, and a necessary addition to the library of anyone involved in teaching calculus, or studying it seriously. N.J. Wildberger, Aust. Math. Soc. Gaz.
This self-contained textbook gives a thorough exposition of multivariable calculus. It can be viewed as a sequel to the one-variable calculus text, A Course in Calculus and Real Analysis, published in the same series. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. For example, when the general definition of the volume of a solid is given using triple integrals, the authors explain why the shell and washer methods of one-variable calculus for computing the volume of a solid of revolution must give the same answer. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus.This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Moreover, the emphasis is on a geometric approach to such basic notions as local extremum and saddle point.Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike. There is also an informative section of "Notes and Comments¿¿ indicating some novel features of the treatment of topics in that chapter as well as references to relevant literature. The only prerequisite for this text is a course in one-variable calculus.
This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus.
This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus.This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.