Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
La sostanza di questo articolo costituì il discorso inaugurale letto nella solenne apertura della Università di Roma nel 1901 e pubblicato nell'Annuario della Università dell'anno 1901-902, riprodotto poi nel Giornale degli Economisti, Serie II, vol. 23, 1901. Esso fu stampato in Francese nella Revue du Mois, anno I, n.° I. Paris, Soudier, 1906, quindi nel vol. III, fasc. II, dell'Archivio di fisiologia (Firenze, gennaio 1906). Anatole France, quell'acuto e geniale filosofo e romanziere, delizia di tanti delicati lettori, racconta questo aneddoto.
This scarce antiquarian book is a selection from Kessinger Publishing's Legacy Reprint Series. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment to protecting, preserving, and promoting the world's literature. Kessinger Publishing is the place to find hundreds of thousands of rare and hard-to-find books with something of interest for everyone!
A fundamental property of permutability is expressed in the following theorem: Two functions permutable with a third are permutable with each other. A group of permutable functions is characterized by a function of the first order of which the first and second partial derivatives exist and are finite. Consequently when we consider a group of permutable functions, we shall always assume that there is known to us a function of the first order which has finite derivatives of the first and second orders and belongs to the group. This function shall be spoken of as the fundamental function of the group. When a fundamental function of the group has the canonical form, we shall speak of the group as a canonical group.A remarkable group of permutable functions is the so-called closed-cycle group, which is made up of functions of the formf(y-x).Unity belongs to this group, and it is deduced immediately.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.