Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The 4th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2010) took place in Big Island, Hawaii, USA, December 18-20, 2010. Past COCOA conferences were held in Xi'an, China (2007), Newfoundland, Canada (2008)and Huangshan, China (2009). COCOA2010providedaforumforresearchersworkingintheareasofcom- natorial optimization and its applications. In addition to theoretical results, the conference also included recent works on experimental and applied research of general algorithmic interest. The Program Committee received 108 submissions from more than 23 countries and regions, including Australia, Austria, Canada, China, Denmark, France, Germany, Hong Kong, India, Italy, Japan, Korea, Mexico, New Zealand, Poland, Slovak Republic, Spain, Sweden, Switzerland, Taiwan, UK, USA, Vietnam, etc. Among the 108 submissions, 49 regular papers were selected for presentation at the conference and are included in this volume. Some of these papers will be selected for publication in a special issue of the Journal of Combinatorial Optimization, a special issue of Theoretical Computer Science, a special issue of Optimization Letters, and a special issue of Discrete Mathematics, Algorithms and Applications under the standard refereeing procedure.
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus- tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster- ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad- dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for infor- mation retrieval. Crichton, Hughes, and Kelly elaborate on the devel- opment of a scientific data system architecture for information retrieval.
The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.