Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Transcriptome Profiling: Progress and Prospects assists readers in assessing and interpreting a large number of genes, up to and including an entire genome. It provides key insights into the latest tools and techniques used in transcriptomics and its relevant topics which can reveal a global snapshot of the complete RNA component of a cell at a given time. This snapshot, in turn, enables the distinction between different cell types, different disease states, and different time points during development. Transcriptome analysis has been a key area of biological inquiry for decades. The next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution. Transcriptome analysis has evolved from the detection of single RNA molecules to large-scale gene expression profiling and genome annotation initiatives. Written by a team of global experts, key topics in Transcriptome Profiling include transcriptome characterization, expression analysis of transcripts, transcriptome and gene regulation, transcriptome profiling and human health, medicinal plants transcriptomics, transcriptomics and genetic engineering, transcriptomics in agriculture, and phylotranscriptomics.
Connectome Analysis: Characterization, Methods, and Analysis is a comprehensive companion for the analysis of brain networks, or connectomes. The book provides sources of constituent structural and functional MRI signals, network construction and practices for analysis, cutting-edge methods that address the latest challenges in neuroscience, and the fundamentals of network theory in the context of giving practical methods for building connectomes for analysis. Emphasis is placed on quality control of the individual analysis steps. Subsequent chapters discuss networks in neuroscience in clinical and general populations, including how findings are related to underlying neurophysiology and neuropsychology. This book is aimed at students and early-career researchers in brain connectomics and neuroimaging who have a background in computer science, mathematics and physics, as well as more broadly to neuroscientists and psychologists who want to start incorporating connectomics into their research.
The excessive use of antibiotics has given rise to an increase in microbial resistance, threatening our ability to treat infectious diseases. The growth in resistance to antimicrobials and antibiotics threatens to reverse almost a century of medical progress. urgent action plans to tackle the crisis of Antimicrobial Resistance (AMR) and multi-resistant bacteria are needed. It is a major research task to find effective ways to reduce the release and degradation of antibiotics and ARBs to the environment. Degradations of Antibiotics and Antibiotic Resistance Bacteria from various sources addresses various issues related the generations and degradations, eliminations of antibiotics and antibiotics resistance bacteria. Degradations of Antibiotics and Antibiotic Resistance Bacteria from various sources contains both practical and theoretical latest and broad aspects of antibiotics and antibiotics resistance bacteria management through the various recent methods. Various factors which are responsible for the efficient degradations are highlighted in the Degradations of Antibiotics and Antibiotic Resistance Bacteria from various sources as separate chapters. Socioeconomic and policies on the ARBs are also discussed.
Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications.
Biomedical Defense Principles to Counter DNA Deep Hacking presents readers with a comprehensive look at the emerging threat of DNA hacking. Dr. Rocky Termanini goes in-depth to uncover the erupting technology being developed by a new generation of savvy bio-hackers who have skills and expertise in biomedical engineering and bioinformatics. The book covers the use of tools such as CRISPR for malicious purposes, which has led agencies such as the U.S. Office of the Director of National Intelligence to add gene editing to its annual list of threats posed by "weapons of mass destruction and proliferation." Readers will learn about the methods and possible effects of bio-hacking attacks, and, in turn the best methods of autonomic and cognitive defense strategies to detect, capture, analyze, and neutralize DNA bio-hacking attacks, including the versatile DNA symmetrical AI Cognitive Defense System (ACDS). DNA bio-hackers plan to destroy, distort and contaminate confidential, healthy DNA records and potentially create corrupted genes for erroneous diagnosis of illnesses, disease genesis and even wrong DNA fingerprinting for criminal forensics investigations.
Quinoa: Chemistry and Technology provides an overview of the chemistry, processing, and technology of quinoa grain and its components, covering the development of quinoa grain in different parts of the world for food production, including its structure, molecular and chemical composition, milling properties, processing characteristics, and food products. Increasing demand for plant-based, gluten-free foods that are nutritious, healthy, sustainable, and affordable has caused quinoa cultivation to expand to over 70 countries due to its attractive nutritional and food security properties. This practical resource is designed to support the development of quinoa in different sectors, such as the food industry.
Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique.
Non-Destructive Testing and Condition Monitoring Techniques in Wind Energy looks at the complex and critical components of energy assets and the importance of inspection and maintenance to ensure their high availability and uninterrupted operation. Presenting the main concepts, state-of-the-art advances and case studies, this book approaches the topic by considering it as an integral part of the overall operation of any wind energy project. Linking the essential NDT subject with its sub disciplines, the book uses computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques to support analysis of prognostic problems with defined constraints and requirements. This book is the first of its kind and will provide useful insights to industrial engineers and scientists, academics and students in the possibilities that NDT and condition monitoring technologies can offer.
Fundamentals of Smart Grid Systems offers an expansive introduction to the operationalization, integration, and management of smart grids--the distributed, renewable, responsive, and highly efficient power grid on the verge of radically transforming our energy system. The book reviews the design of smart grid systems, their associated technologies, and operations, helping users develop a modern foundational understanding of smart grid systems and many of their advanced implementations, where sophisticated technologies are employed. The work serves as a guidebook and primer for early career researchers, with a rich integration of current science, modern applications, and future implementations.
Advances in Epidemiological Modeling and Control of Viruses covers recent and advanced research works in the field of epidemiological modeling, with special emphasis on new strategies to control the occurrence and reoccurrence of viruses. The models included in this book can be used to study the dynamics of different viruses, searching for control measures, and epidemic models under various effects and environments. This book covers different models and methods of modeling, including data-driven approaches. The authors and editors are experienced researchers, and each chapter has been designed to provide readers with leading-edge information on topics discussed.
"Highlights the importance of designing intelligent testing centers requiring no human intervention during sample collection and testing for Coronavirus as well as other viruses. This book introduces the background, medical requirements, and new research on medical robotics applications, including general diagnostic techniques for COVID-19, development considerations for intelligent testing booths, kinematic and dynamic modeling, design specifications, design optimization, numerical verifications, actuators, and sensors in medical applicatiosn of artificial intelligence and robotics systems with the aim of providing the healthcare sector with a guideline on how the latest technologies can be used to battle pandemics such as COVID-19."--From the publisher.
Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems explores the various benefits and challenges associated with the integration of blockchain with IoT healthcare systems, focusing on designing cognitive-embedded data technologies to aid better decision-making, processing and analysis of large amounts of data collected through IoT. This book series targets the adaptation of decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures, as well as big data and Internet of Things (IoT) problems can be handled in practice. Current Internet of Things (IoT) based healthcare systems are incapable of sharing data between platforms in an efficient manner and holding them securely at the logical and physical level. To this end, blockchain technology guarantees a fully autonomous and secure ecosystem by exploiting the combined advantages of smart contracts and global consensus. However, incorporating blockchain technology in IoT healthcare systems is not easy. Centralized networks in their current capacity will be incapable to meet the data storage demands of the incoming surge of IoT based healthcare wearables.
Design of Smart Manufacturing Systems covers the fundamentals and applications of smart manufacturing or Industry 4.0 system design, along with interesting case studies. Digitization and Cyber-Physical Systems (CPS) have vastly increased the amount of data available to manufacturing production systems. This book addresses the planning, modeling and experimentation of different decision-making problems as well as the conditions that affect manufacturing. In addition, recent developments in the design of smart manufacturing and its applications are explained, covering the needs of both researchers and practitioners. To fully navigate the challenges and opportunities of smart manufacturing systems, contributions are drawn from operations research, information systems, computer science and industrial engineering as well as manufacturing engineering.
Health Care Today in the United States details the complexities of health care in the United States and provides readers with up-to-date information on the state of health care, its challenges, and how to navigate the system. Sections cover patient populations, diverse cultures, legalities, the opioid epidemic, the impact of COVID-19, health care costs, insurance and the impact of technology on health care. Written for students seeking a health science degree, as well as health care professionals, nurses, medical students, and those in the field of public health, this book provides a comprehensive view of health care in the U.S.
Digital Transformation in Healthcare in Post-Covid19 Times discusses recent advances in patient care and offers critical comparative insights into their application across multiple domains in healthcare. By showcasing key problems, best practices and emerging challenges, the book offers a state-of-art review of opportunities and prospects in the process of delivering smart sustainable healthcare services. Topics discussed include healthcare challenges in the post-COVID-19 era, enabling technologies for digital transformation, value driven approaches to the delivery of patient centric top-quality health services, and analytics and enhanced decision making. In addition, the book updates knowledge on best practices for training towards digital transformation and sustainable health. This is a valuable resource for healthcare professionals, medical doctors, researchers, graduate students and members of the biomedical field who are interested in learning more about the use of emerging technologies in healthcare.
Applications of Essential Oils in the Food Industry delivers detailed information on the application of essential oils derived from underutilized crops and herbs for the development, preservation, and safety of food products. The book covers post-harvest fruits and vegetables and their adjuvant and plasticizers when applied as an edible coating, as well as their mechanism of action as preservatives for foods, such as fish, meats, and yogurts. The book highlights the use of essential oils as anti-microbials, bio-preservatives, and antioxidants, and also examines their effectiveness against several food borne pathogens and in enhancing the aroma of food products.
A volume in the series on Foundations and Frontiers of Enzymology, Enzymes Beyond Traditional Applications in Dairy Science and Technology presents the applications of enzymes in dairy science and technology. Broken into four sections, this book provides a brief account of traditional applications of indigenous milk enzymes, the actions of exogenous enzymes on milk proteins for generating bioactive peptides and lactose for value addition, and methods and approaches for ensuring milk quality or cleaning milk plants. This book is an excellent resource for postgraduate students, academics, food scientists, and dairy professionals engaged in milk processing.
Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented.
Vegetation Dynamics and Crop Stress: An Earth-Observation Perspective focuses on vegetation dynamics and crop stress at both the regional and country levels by using earth observation (EO) data sets. The book uniquely provides a better understanding of natural vegetation and crop failure through geo-spatial technologies. This book covers biophysical control of vegetation, deforestation, desertification, drought, and crop-water efficiency, as well as the application of satellite-derived measures from optical, thermal, and microwave domains for monitoring and modeling crop condition, agricultural drought, and crop health in contrasting monsoon/weather episodes.
IoT-Enabled Multi-Energy Systems: From Isolated Energy Grids to Modern Interconnected Networks proposes practical solutions for the management and control of energy interactions throughout the interconnected energy infrastructures of the future multi-energy grid. The book discusses a panorama of modeling, planning and optimization considerations for IoT technologies, their applications across grid modernization, and the coordinated operation of multi-vector energy grids. The work is suitable for energy, power, mechanical, chemical, process and environmental engineers, and highly relevant for researchers and postgraduate students who work on energy systems. Sections address core theoretical underpinnings, significant challenges and opportunities, how to support IoT-based developed expert systems, and how AI can empower IoT technologies to sustainably develop fully renewable modern multi-carrier energy networks. Contributors address artificial intelligence technology and its applications in developing IoT-based technologies, cloud-based intelligent energy management schemes, data science and multi-energy big data analysis, machine learning and deep learning techniques in multi-energy systems, and much more.
The Boolean functions may be iterated either asynchronously, when their coordinates are computed independently of each other, or synchronously, when their coordinates are computed at the same time. In Boolean Systems: Topics in Asynchronicity, a book addressed to mathematicians and computer scientists interested in Boolean systems and their use in modelling, author Serban E. Vlad presents a consistent and original mathematical theory of the discrete-time Boolean asynchronous systems. The purpose of the book is to set forth the concepts of such a theory, resulting from the synchronous Boolean system theory and mostly from the synchronous real system theory, by analogy, and to indicate the way in which known synchronous deterministic concepts generate new asynchronous nondeterministic concepts. The reader will be introduced to the dependence on the initial conditions, periodicity, path-connectedness, topological transitivity, and chaos. A property of major importance is invariance, which is present in five versions. In relation to it, the reader will study the maximal invariant subsets, the minimal invariant supersets, the minimal invariant subsets, connectedness, separation, the basins of attraction, and attractors. The stability of the systems and their time-reversal symmetry end the topics that refer to the systems without input. The rest of the book is concerned with input systems. The most consistent chapters of this part of the book refer to the fundamental operating mode and to the combinational systems (systems without feedback). The chapter Wires, Gates, and Flip-Flops presents a variety of applications. The first appendix addresses the issue of continuous time, and the second one sketches the important theory of Daizhan Cheng, which is put in relation to asynchronicity. The third appendix is a bridge between asynchronicity and the symbolic dynamics of Douglas Lind and Brian Marcus.
Nanotechnology for Drug Delivery and Pharmaceutical Sciences presents various drug-delivery techniques that utilize nanotechnology for the biomedical domain, highlighting both therapeutic and diagnostic applications. The book provides important facts and detailed studies on different promising nanocarriers like liposomes, exosomes and virus-based nanocarriers. Moreover, it explores these nanocarriers' utilization in the therapeutic applications of various diseases such as cancer, inflammation, neurodegenerative disorders like Huntington's disease, Alzheimer's disease, human immunodeficiency virus (HIV), and inflammatory bowel disease. In addition, the book describes how nanotechnology has efficiently overtaken conventional dosage forms and provided comfort and ease to patients. Relevant information regarding market trends, patents and social-economic factors are also provided, making this the perfect reference for doctors, researchers and scientists working in the fields of medicine, biochemistry, biotechnology, nanobiotechnology and the pharmaceutical sciences.
Medical Device Regulation provides the current FDA-CDRH thinking on the regulation of medical devices. This book offers information on how devices meet criteria for being a medical device, which agencies regulate medical devices, how policies regarding regulation affect the market, rules regarding marketing, and laws and standards that govern testing. This practical, well-structured reference tool helps medical device manufacturers both in and out of the United States with premarket application and meeting complex FDA regulatory requirements. The book delivers a comprehensive overview of the field from an author with expertise in regulatory affairs and commercialization of medical devices.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.