Udvidet returret til d. 31. januar 2025

Bøger i Annals of Mathematics Studies serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  •  
    1.380,95 kr.

    The description for this book, Topics in Transcendental Algebraic Geometry. (AM-106), will be forthcoming.

  • af John Milnor
    904,95 kr.

    One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "e;The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.

  • - Their Geometry and Arithmetic (AM-183)
    af Mark Green, Phillip A. Griffiths & Matt Kerr
    1.114,95 - 2.520,95 kr.

    Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.

  • af Wei Zhang, Xinyi Yuan & Shou-wu Zhang
    1.168,95 - 2.181,95 kr.

    This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

  • - Asymptotics and Applications (AM-164)
    af J. Baik, T. Kriecherbauer, Kenneth D.T-R McLaughlin & mfl.
    828,95 kr.

    This book describes the theory and applications of discrete orthogonal polynomials--polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin & P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis.

  • af Kurt Godel
    590,95 kr.

    Kurt Godel, mathematician and logician, was one of the most influential thinkers of the twentieth century. Godel fled Nazi Germany, fearing for his Jewish wife and fed up with Nazi interference in the affairs of the mathematics institute at the University of Gottingen. In 1933 he settled at the Institute for Advanced Study in Princeton, where he joined the group of world-famous mathematicians who made up its original faculty. His 1940 book, better known by its short title, The Consistency of the Continuum Hypothesis, is a classic of modern mathematics. The continuum hypothesis, introduced by mathematician George Cantor in 1877, states that there is no set of numbers between the integers and real numbers. It was later included as the first of mathematician David Hilbert's twenty-three unsolved math problems, famously delivered as a manifesto to the field of mathematics at the International Congress of Mathematicians in Paris in 1900. In The Consistency of the Continuum Hypothesis Godel set forth his proof for this problem. In 1999, Time magazine ranked him higher than fellow scientists Edwin Hubble, Enrico Fermi, John Maynard Keynes, James Watson, Francis Crick, and Jonas Salk. He is most renowned for his proof in 1931 of the 'incompleteness theorem,' in which he demonstrated that there are problems that cannot be solved by any set of rules or procedures. His proof wrought fruitful havoc in mathematics, logic, and beyond.

  • af G. Daniel Mostow & Pierre Deligne
    1.034,95 kr.

    The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "e;at infinity"e; permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

  • af R. C. Penner & John L. Harer
    1.102,95 kr.

    Measured geodesic laminations are a natural generalization of simple closed curves in surfaces, and they play a decisive role in various developments in two-and three-dimensional topology, geometry, and dynamical systems. This book presents a self-contained and comprehensive treatment of the rich combinatorial structure of the space of measured geodesic laminations in a fixed surface. Families of measured geodesic laminations are described by specifying a train track in the surface, and the space of measured geodesic laminations is analyzed by studying properties of train tracks in the surface. The material is developed from first principles, the techniques employed are essentially combinatorial, and only a minimal background is required on the part of the reader. Specifically, familiarity with elementary differential topology and hyperbolic geometry is assumed. The first chapter treats the basic theory of train tracks as discovered by W. P. Thurston, including recurrence, transverse recurrence, and the explicit construction of a measured geodesic lamination from a measured train track. The subsequent chapters develop certain material from R. C. Penner's thesis, including a natural equivalence relation on measured train tracks and standard models for the equivalence classes (which are used to analyze the topology and geometry of the space of measured geodesic laminations), a duality between transverse and tangential structures on a train track, and the explicit computation of the action of the mapping class group on the space of measured geodesic laminations in the surface.

  • af Richard Taylor & Michael Harris
    1.167,95 kr.

    This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "e;simple"e; Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.

  • af Robert L. Bryant
    417,95 kr.

    Investigates the geometry of complex subvarieties of compact Hermitian symmetric spaces, particularly the complex Grassmannians, which are central to Schubert calculus and its applications to enumerative algebraic geometry. This book employs a combination of Hermitian differential geometry, calibrations, and classical moving frame constructions.

  • af Victor Guillemin
    970,95 kr.

    The subject matter of this work is an area of Lorentzian geometry which has not been heretofore much investigated: Do there exist Lorentzian manifolds all of whose light-like geodesics are periodic? A surprising fact is that such manifolds exist in abundance in (2 + 1)-dimensions (though in higher dimensions they are quite rare). This book is concerned with the deformation theory of M2,1 (which furnishes almost all the known examples of these objects). It also has a section describing conformal invariants of these objects, the most interesting being the determinant of a two dimensional "e;Floquet operator,"e; invented by Paneitz and Segal.

  • af Alonzo Church
    1.068,95 kr.

    Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979 At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.

  •  
    1.175,95 kr.

    The description for this book, Automata Studies. (AM-34), will be forthcoming.

  • - Measures and Integrals. (AM-21)
    af John von Neumann
    1.098,95 kr.

    Geometry of orthogonal spaces.

  • af Salomon Trust
    1.175,95 kr.

    The description for this book, Lectures on Fourier Integrals. (AM-42), will be forthcoming.

  • af Hung-his Wu
    1.054,95 kr.

    This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research.

  •  
    1.790,95 kr.

    This collection of papers constitutes a wide-ranging survey of recent developments in differential geometry and its interactions with other fields, especially partial differential equations and mathematical physics. This area of mathematics was the subject of a special program at the Institute for Advanced Study in Princeton during the academic year 1979-1980; the papers in this volume were contributed by the speakers in the sequence of seminars organized by Shing-Tung Yau for this program. Both survey articles and articles presenting new results are included. The articles on differential geometry and partial differential equations include a general survey article by the editor on the relationship of the two fields and more specialized articles on topics including harmonic mappings, isoperimetric and Poincaré inequalities, metrics with specified curvature properties, the Monge-Arnpere equation, L2 harmonic forms and cohomology, manifolds of positive curvature, isometric embedding, and Kraumlhler manifolds and metrics. The articles on differential geometry and mathematical physics cover such topics as renormalization, instantons, gauge fields and the Yang-Mills equation, nonlinear evolution equations, incompleteness of space-times, black holes, and quantum gravity. A feature of special interest is the inclusion of a list of more than one hundred unsolved research problems compiled by the editor with comments and bibliographical information.

  • af Gary R. Jensen & Phillip A. Griffiths
    1.052,95 kr.

    The theory of exterior differential systems provides a framework for systematically addressing the typically non-linear, and frequently overdetermined, partial differential equations that arise in differential geometry. Adaptation of the techniques of microlocalization to differential systems have led to recent activity on the foundations of the theory; in particular, the fundamental role of the characteristic variety in geometric problems is now clearly established. In this book the general theory is explained in a relatively quick and concrete manner, and then this general theory is applied to the recent developments in the classical problem of isometric embeddings of Riemannian manifolds.

  • af Komaravolu Chandrasekharan & Salomon Bochner Trust
    908,95 kr.

    The description for this book, Fourier Transforms. (AM-19), Volume 19, will be forthcoming.

  • - The Geometry of Orthogonal Spaces. (AM-22)
    af John von Neumann
    690,95 kr.

    Measures and integrals

  • af William Fulton
    934,95 kr.

    Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

  • af Paul R. Halmos
    887,95 kr.

    As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "e;his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."e;

  •  
    1.384,95 kr.

    The description for this book, Seminar on Atiyah-Singer Index Theorem. (AM-57), will be forthcoming.

  • af James R. Munkres
    695,95 kr.

    The description for this book, Elementary Differential Topology. (AM-54), Volume 54, will be forthcoming.

  • af Daniel W. Stroock
    1.058,95 kr.

    Kiyosi Ito's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Ito's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Ito interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Ito's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Ito's stochastic integral calculus. In the second half, the author provides a systematic development of Ito's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Ito's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.

  • - A Diophantine Perspective. (AM-159)
    af Nicholas M. Katz
    1.510,95 kr.

    It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "e;pure"e; algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a "e;generalized Sato-Tate law,"e; and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the "e;geometric monodromy group"e; attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information. In Moments, Monodromy, and Perversity, Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject. The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber. The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields.

  • af Harold William Kuhn
    734,95 kr.

    This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its frontiers half a century ago. Kuhn devotes considerable space to topics that, while not strictly the subject matter of game theory, are firmly bound to it. These are taken mainly from the geometry of convex sets and the theory of probability distributions. The book opens by addressing "e;matrix games,"e; a name first introduced in these lectures as an abbreviation for two-person, zero-sum games in normal form with a finite number of pure strategies. It continues with a treatment of games in extensive form, using a model introduced by the author in 1950 that quickly supplanted von Neumann and Morgenstern's cumbersome approach. A final section deals with games that have an infinite number of pure strategies for the two players. Throughout, the theory is generously illustrated with examples, and exercises test the reader's understanding. A historical note caps off each chapter. For readers familiar with the calculus and with elementary matrix theory or vector analysis, this book offers an indispensable store of vital insights on a subject whose importance has only grown with the years.

  • - Papers Dedicated to C. T. C. Wall. (AM-145)
     
    1.388,95 kr.

    Surgery theory is the basis for the classification theory of manifolds. There have been extraordinary accomplishments in that time, which have led to varied interactions with algebra, analysis, and geometry. This work is of interest to those interested in topology, not only graduate students and mathematicians, but also mathematical physicists.

  • af Amnon Neeman
    1.390,95 kr.

    The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"e;--the "e;well generated triangulated categories"e;--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics.

  • af Stephen S. Kudla, Michael Rapoport & Tonghai Yang
    1.180,95 kr.

    Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "e;M"e; attached to a Shimura curve "e;M"e; over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "e;M"e;. The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "e;M"e;. In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.