Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Organized into 12 chapters, this book includes numerous interesting, relevant and up-to date applications that are drawn from the fields of business, economics, social and behavioural sciences, life sciences, physical sciences, and other fields of general interest.
This is an introductory-level text on fractional calculus and fractional differential equations. Targeted to graduate students of mathematics and researchers, it contains several new definitions of fractional integrals and fractional derivatives. With interesting applications of the subject in several areas of physical sciences, life sciences, engineering, and technology, the book helps the students understand the importance and developments of this topic. The book is enriched with a list of useful references to published literature, and the presentation of the book is entirely new and easily comprehensible to the students. Some of the topics are refined, and new examples are included to supplement theories to help students understand the concepts easily and clearly.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days.
This book collects select chapters on modern industrial problems related to uncertainties and vagueness in the expert domain of knowledge. The book further provides the knowledge related to application of various mathematical and statistical tools in these areas. The results presented in the book help the researchers and scientists in handling complicated projects in their domains. Useful to industrialists, academicians, researchers and students alike, the book aims to help managers and technical specialists in designing and implementation of reliability and risk programs as below: Ensure the system safety and risk informed asset management Follow a proper strategy to maintain the mechanical components of the system Schedule the proper actions throughout the product life cycle Understand the structure and cost of a complex system Plan the proper schedule to improve the reliability and life of the system Identify unwanted failures and set up preventive and correction action
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes.
This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
This book publishes original research chapters on the theory of approximation by positive linear operators as well as theory of sequence spaces and illustrates their applications. Chapters are original and contributed by active researchers in the field of approximation theory and sequence spaces. Each chapter describes the problem of current importance and summarizes ways of their solution and possible applications which improve the current understanding pertaining to sequence spaces and approximation theory. The presentation of the articles is clear and self-contained throughout the book.
This book deals with several types of multi-dimensional control problems in the face of data uncertainty for vector cases-multi-dimensional multi-objective control problem with uncertain objective functionals, uncertain constraint functionals, and uncertain objective as well as constraint functionals, uncertain multi-dimensional multi-objective control problem with semi-infinite constraints, uncertain dual multi-dimensional multi-objective variational control problem, and second-order PDE&PDI constrained robust optimization problem. The book provides the solution approaches-an exact l1 penalty function approach, modified objective approach, robust approach-in the simplest way to solve the recent developing optimization problems in the sense of uncertainty.
This book presents the basic concepts of survival analysis and frailty models, covering both fundamental and advanced topics. It focuses on applications of statistical tools in biology and medicine, highlighting the latest frailty-model methodologies and applications in these areas. After explaining the basic concepts of survival analysis, the book goes on to discuss shared, bivariate, and correlated frailty models and their applications. It also features nine datasets that have been analyzed using the R statistical package. Covering recent topics, not addressed elsewhere in the literature, this book is of immense use to scientists, researchers, students and teachers.
The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar-Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book's main theme.
It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization.
The present volume contains invited talks of 11th biennial conference on "Emerging Mathematical Methods, Models and Algorithms for Science and Technology".
This book presents the basic concepts of survival analysis and frailty models, covering both fundamental and advanced topics. After explaining the basic concepts of survival analysis, the book goes on to discuss shared, bivariate, and correlated frailty models and their applications.
The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography.
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames.
The present volume contains invited talks of 11th biennial conference on "Emerging Mathematical Methods, Models and Algorithms for Science and Technology".
The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.