Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book provides an introduction to the modern theory of polynomials whose coefficients are linear bounded operators in a Banach space - operator polynomials. Throughout many years, I have worked wtih several mathematicians on the subject of operator polynomials, and, consequently, their ideas have influenced my view of the subject;
The Pade approximation problem is, roughly speaking, the local approximation of analytic or meromorphic functions by rational ones. For certain problems however, the Pade approximation problem for formal Laurent series, rather than for formal power series seems to be a more natural basis.
The classicallossless inverse scattering (LIS) problem of network theory is to find all possible representations of a given Schur function s(z) (i. e. , a function which is analytic and contractive in the open unit disc D) in terms of an appropriately restricted class of linear fractional transformations. These linear fractional transformations corre spond to lossless, causal, time-invariant two port networks and from this point of view, s(z) may be interpreted as the input transfer function of such a network with a suitable load. More precisely, the sought for representation is of the form s(Z) = -{ -A(Z)SL(Z) + B(z)}{ -C(Z)SL(Z) + D(z)} -1 , (1. 1) where "the load" SL(Z) is again a Schur function and _ [A(Z) B(Z)] 0( ) (1. 2) Z - C(z) D(z) is a 2 x 2 J inner function with respect to the signature matrix This means that 0 is meromorphic in D and 0(z)* J0(z) ::5 J (1. 3) for every point zED at which 0 is analytic with equality at almost every point on the boundary Izi = 1. A more general formulation starts with an admissible matrix valued function X(z) = [a(z) b(z)] which is one with entries a(z) and b(z) which are analytic and bounded in D and in addition are subject to the constraint that, for every n, the n x n matrix with ij entry equal to X(Zi)J X(Zj )* i,j=l, . . .
This text establishes a theory for general linear parabolic partial differential equations that covers equations with inhomogeneous symbol structure as well as mixed-order systems.
This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity.
The Workshop on Operator Theory and Boundary Eigenvalue Problems was held at the Technical University, Vienna, Austria, July 27 to 30, 1993.
The volume contains contributions from authors from a large variety of countries on different aspects of partial differential equations, such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches.
PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t).
This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory.
If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, .
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x ~ o. (ii) is linear in x. (iii) = (intherealease,thisisjust =
This volume opens with a paper by V.P. Havin that presents a comprehensive survey of the work of mathematician S.Ya. It includes a complete bibliography, previously unpublished, of 163 items, and twelve peer-reviewed research and expository papers by leading mathematicians, including the joint paper by Khavinson and T.S.
Presenting several developments in the theory of hyperbolic equations, this book's contributions deal with questions of low regularity, critical growth, ill-posedness, decay estimates for solutions of different non-linear hyperbolic models, and introduce new approaches based on microlocal methods.
The origins of Schur analysis lie in a 1917 article by Issai Schur in which he constructed a numerical sequence to correspond to a holomorphic contractive function on the unit disk.
For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors' work, and has no significant overlap with other books on the theory of elliptic boundary value problems.
For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors' work, and has no significant overlap with other books on the theory of elliptic boundary value problems
Helps in study of the theory of linear systems by using tools from the theory of linear operators. This book covers methods including noncommutative systems theory, aspects of the theory of discrete systems, discrete analogs of canonical systems, and applications to the theory of Bezoutiants and convolution equations.
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry ¿ all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015.Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations.The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathematical physics.
The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process.
This monograph discusses covariant Schroedinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schroedinger operators has mainly focused on scalar Schroedinger operators on Euclidean spaces so far.
This book consists of invited survey articles and research papers in the scientific areas of the ¿International Workshop on Operator Algebras, Operator Theory and Applications,¿ which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems.Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more.The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain.
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications.
This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis.
With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting.
This volume is dedicated to Rien Kaashoek on the occasion of his 80th birthday and celebrates his many contributions to the field of operator theory during more than fifty years. Eighteen research papers by friends and colleagues of Rien Kaashoek are included in the second part. Contributions by J.
This book consists of invited survey articles and research papers in the scientific areas of the "International Workshop on Operator Algebras, Operator Theory and Applications," which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems.Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.