Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The aim of the Protein Reviews is to serve as a publication vehicle for review articles that focus on crucial current vigorous aspects of protein structure, function, evolution and genetics. The volumes will appear online before they are published in a printed book. Articles are selected according to their importance to the understanding of biological systems, their relevance to the unravelling of issues associated with health and disease or their impact on scientific or technological advances and developments. The chapters in volume 18 are authored by experts in the field. They deal with aspects of structure and/or biological activity of selected proteins. The chapters review current research of the following topics: the Mechanism of channel gating and regulation of the activity of calcium-activated chloride channel ANO1, Structure and function of the two-component cytotoxins of Staphylococcus aureus, Membrane Fusion and Infection involving the influenza virus hemagglutinin, The impact of arrhythmogenic mutations through the structural determination of the L-type voltage-gated calcium channel, Discussion of some open questions pertaining to histone post-translational modifications and nucleosome organization in transcriptional regulation, Regulation of the extracellular SERPINA5 (protein C inhibitor) penetration through cellular membranes, Coding of Class I and II aminoacyl-tRNA synthetases, Nephrin phosphorylation in diabetes and chronic kidney injury, The structure-forming juncture in oxidative protein folding and the events in the ER, The polyspecificity of anti-lipid antibodies and its relevance to the development of autoimmunity. This volume is intended for research scientists, clinicians, physicians and graduate students in the fields of biochemistry, cell biology, molecular biology, immunology and genetics.
This book aims to cover the knowledge of protein folding accumulated from studies of disulfide-containing proteins, including methodologies, folding pathways, and folding mechanism of numerous extensively characterized disulfide proteins.
Gabriel Waksman Institute of Structural Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, United Kingdom Address for correspondence: Professor Gabriel Waksman Institute of Structural Molecular Biology Birkbeck and University College London Malet Street London WC1E 7H United Kingdom Email: g.
This association implied these parts of the tRNA, namely the D loop containing residue 15 and the 5' end of the T stem-adjoining residue 48, folded on one another in a tertiary structure shared by different tRNAs.
Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology.
Research indicates that most neurodegenerative diseases, systemic amyloidoses and many others, arise from the misfolding and aggregation of an underlying protein. The authors summarize recent progress in the understanding of the relationships between protein misfolding, aggregation and development of protein deposition disorders.
The range of information covered includes signal proteins, ion channels, and fusion proteins.This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.
This book surveys the current knowledge concerning the expression and function of stress proteins in different organisms, ranging from prokaryotes to humans. It provides an overview of the diversity and complex evolutionary history of cell stress proteins and describes their function and expression in different eukaryote models.
Research indicates that most neurodegenerative diseases, systemic amyloidoses and many others, arise from the misfolding and aggregation of an underlying protein. The authors summarize recent progress in the understanding of the relationships between protein misfolding, aggregation and development of protein deposition disorders.
The range of information covered includes signal proteins, ion channels, and fusion proteins.This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.