Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book presents a selection of papers presented to the Second Inter- national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984 : to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue- ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur- ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas- trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "e;discovered"e; in portfolio theory enlarging so the fundamental model of Markowitz.
Unifying two decades of research, this book is the first to establish a comprehensive foundation for a systematic analysis and design of linear systems with general state and input constraints. For such systems, which can be used as models for most nonlinear systems, the issues of stability, controller design, additonal constraints, and satisfactory performance are addressed.The book is an excellent reference for practicing engineers, graduate students, and researchers in control systems theory and design. It may also serve as an advanced graduate text for a course or a seminar in nonlinear control systems theory and design in applied mathematics or engineering departments. Minimal prerequisites include a first graduate course in state-space methods as well as a first course in control systems design.
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schrödinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.
The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest over the last century. These topological methods of ?xed point theory are divided, roughly speaking, into two types. The ?rst type includes such as the Banach Contraction Principle where the assumptions on the space can be very mild but a small change of the map can remove the ?xed point. The second type, on the other hand, such as the Brouwer and Lefschetz Fixed Point Theorems, give the existence of a ?xed point not only for a given map but also for any its deformations. This book is an exposition of a part of the topological ?xed and periodic point theory, of this second type, based on the notions of Lefschetz and Nielsen numbers. Since both notions are homotopyinvariants, the deformationis used as an essential method, and the assertions of theorems typically state the existence of ?xed or periodic points for every map of the whole homotopy class, we refer to them as homotopy methods of the topological ?xed and periodic point theory.
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes. Specific discussions include:¿ Noether's theorem, integrability, KAM theory, and a definition of chaotic behavior.¿ Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems.¿ Random matrix theory and supersymmetry. The book is divided into several parts. Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems. Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques. Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively. Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapter 9 discusses the quantum mechanics of systems driven by time-periodic forces. Chapter 10 reviews some recent work on the stochastic manifestations of chaos.The presentation is complete and self-contained; appendices provide much of the needed mathematical background, and there are extensive references to the current literature. End of chapter problems help students clarify their understanding. In this new edition, the presentation has been brought up to date throughout, and a new chapter on open quantum systems has been added.About the author:Linda E. Reichl, Ph.D., is a Professor of Physics at the University of Texas at Austin and has served as Acting Director of the Ilya Prigogine Center for Statistical Mechanics and Complex Systems since 1974. She is a Fellow of the American Physical Society and currently is U.S. Editor ofthe journal Chaos, Solitons, and Fractals.
Control Theory for Linear Systems deals with the mathematical theory of feedback control of linear systems. It treats a wide range of control synthesis problems for linear state space systems with inputs and outputs. The book provides a treatment of these problems using state space methods, often with a geometric flavour. Its subject matter ranges from controllability and observability, stabilization, disturbance decoupling, and tracking and regulation, to linear quadratic regulation, H2 and H-infinity control, and robust stabilization. Each chapter of the book contains a series of exercises, intended to increase the reader's understanding of the material. Often, these exercises generalize and extend the material treated in the regular text.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.