Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
'Forestillinger om Ana Ivan' begynder i Brooklyn et forår hvor en ung, dansk praktikant møder kunstneren og matematikeren Ana Ivan. Ana er opvokset i Rumænien i tiden op til Ceausescus fald i 1989, og hendes livshistorie indeholder en dramatisk og afgørende begivenhed. Over de næste måneder hjælper praktikanten Ana med at gennemføre et eksperiment, der skal opløse hendes tidsfornemmelse, og inden længe er han viklet ind i den historie, der har hjemsøgt Anas familie i generationer. Fra et matematisk institut i Ceausescus Rumænien, over en landsby i Marokko, til Bergens kunstscene og et mørklagt galleri i New York følger vi Ana og hendes familie på deres flugt fra fortiden og dybt ind i en ung mands liv. 'Forestillinger om Ana Ivan' er en fængslende historie om venskab og kærlighed, om anekdoter og røverhistorier og om besættelse og skuffelse. I særdeleshed er det historien om fortællingers evne til at forføre og forvandle verden omkring os, og om hvor vigtigt det er både at finde frem til og finde sig til rette i sin egen livsfortælling.
A Mathematician's Apology is the famous essay by British mathematician G. H. Hardy. It concerns the aesthetics of mathematics with some personal content, and gives the layman an insight into the mind of a working mathematician. Indeed, this book is often considered one of the best insights into the mind of a working mathematician written for the layman.¿A Mathematician's Apology is the famous essay by British mathematician G. H. Hardy. It concerns the aesthetics of mathematics with some personal content, and gives the layman an insight into the mind of a working mathematician. Indeed, this book is often considered one of the best insights into the mind of a working mathematician written for the layman.
Quadratic equations, Pythagoras' theorem, imaginary numbers, and pi - you may remember studying these at school, but did anyone ever explain why? Never fear - bestselling science writer, and your new favourite maths teacher, Michael Brooks, is here to help.In The Maths That Made Us, Brooks reminds us of the wonders of numbers: how they enabled explorers to travel far across the seas and astronomers to map the heavens; how they won wars and halted the HIV epidemic; how they are responsible for the design of your home and almost everything in it, down to the smartphone in your pocket. His clear explanations of the maths that built our world, along with stories about where it came from and how it shaped human history, will engage and delight. From ancient Egyptian priests to the Apollo astronauts, and Babylonian tax collectors to juggling robots, join Brooks and his extraordinarily eccentric cast of characters in discovering how maths made us who we are today.
From zero to infinity, this entertaining hardback guide opens up a new world of knowledge based on the magic of numbers. Numbers have occupied our thoughts since man first realized he had not one opposable thumb but two. And from simple enumeration they have grown to be the most important and universal language there is. The Book of Numbers highlights the dominant role that numbers play in everyday life, as well as exploring how numbers and number systems evolved, and delving into the mysteries of mankind's most powerful numbers: - What are the top-ten One Hit Wonders?- What's so magnificent about 7?- Why is 13 unlucky?>From algebra to astrology, music to mythology, from religion to recreation and from science to superstition, The Book of Numbers embraces this infinitely broad subject and puts it all in order-beginning with 0.
This volume contains 8 papers that have been collected by the Canadian Society for History and Philosophy of Mathematics. It showcases rigorously reviewed contemporary scholarship on an interesting variety of topics in the history and philosophy of mathematics.Some of the topics explored include:A way to rethink how logic is taught to philosophy students by using a rejuvenated version of the Aristotelian idea of an argument schemaA quantitative approach using data from Wikipedia to study collaboration between nineteenth-century British mathematiciansThe depiction and perception of Émilie Du Châtelet¿s scientific contributions as viewed through the frontispieces designed for books written by or connected to herA study of the Cambridge Women¿s Research Club, a place where British women were able to participate in scholarly scientific discourse in the middle of the twentieth centuryAn examination of the researchand writing process of mathematicians by looking at their drafts and other preparatory notesA global history of al-Khw¿r¿zm¿¿s Kit¿b al-jabr wa-l-muq¿bala as obtained by tracing its reception through numerous translations and commentariesWritten by leading scholars in the field, these papers are accessible not only to mathematicians and students of the history and philosophy of mathematics, but also to anyone with a general interest in mathematics.
From the bestselling author of Quantum Computing for Everyone, a concise, accessible, and elegant approach to mathematics that not only illustrates concepts but also conveys the surprising nature of the digital information age.Most of us know something about the grand theories of physics that transformed our views of the universe at the start of the twentieth century: quantum mechanics and general relativity. But we are much less familiar with the brilliant theories that make up the backbone of the digital revolution. In Beautiful Math, Chris Bernhardt explores the mathematics at the very heart of the information age. He asks questions such as: What is information? What advantages does digital information have over analog? How do we convert analog signals into digital ones? What is an algorithm? What is a universal computer? And how can a machine learn?The four major themes of Beautiful Math are information, communication, computation, and learning. Bernhardt typically starts with a simple mathematical model of an important concept, then reveals a deep underlying structure connecting concepts from what, at first, appear to be unrelated areas. His goal is to present the concepts using the least amount of mathematics, but nothing is oversimplified. Along the way, Bernhardt also discusses alphabets, the telegraph, and the analog revolution; information theory; redundancy and compression; errors and noise; encryption; how analog information is converted into digital information; algorithms; and finally, neural networks. Historical anecdotes are included to give a sense of the technology at that time, its impact, and the problems that needed to be solved. Taking its readers by the hand, regardless of their math background, Beautiful Math is a fascinating journey through the mathematical ideas that undergird our everyday digital interactions.
Dieses Standardwerk zu philosophischen Hintergründen des mathematischen Denkens und Sprechens, Lehrens und Lernens bietet einen umfangreichen Abriss zur Geschichte der Philosophie der Mathematik bis hin zu aktuellen Strömungen. Es diskutiert mathematische und philosophische Grundfragen der historischen wie der modernen Mathematik. Über Mengenlehre, Logik und Axiomatik führt es in mathematische Grundlagen ein, untersucht das Verhältnis von Wahrheit und Beweis und stellt fundamentale Ergebnisse, ungelöste und unlösbare Probleme vor.
Der Buchtitel Von Eratosthenes bis Einstein deutet einen großen Bogen an, der in einer mathematischen Zeitreise durchlaufen wird. Das Buch wendet sich an Studierende und an Personen, welche mehr über die Geschichte unseres Weltbilds von der Antike bis zur Gegenwart im Zusammenhang mit den Biografien der Protagonisten erfahren wollen. In der Antike sind dies Denker, welche nach rationalen Ursachen der Naturerscheinungen fragen und rationale Antworten versuchen, und Denker, welche Philosophie, Mathematik und Astronomie zu einer ersten Blüte bringen. In der Renaissance und Neuzeit weisen Kopernikus mit dem heliozentrischen Weltbild sowie Galilei und Kepler mit einer neuen Verknüpfung von Empirie und mathematisch geprägter Theorie den Weg zu naturwissenschaftlichem Denken, vollendet Isaac Newton mit einer tieferen Begründung und Mathematisierung der Physik die kopernikanische Wende und eröffnet gleichzeitig eine Forschungs- und Wissensvielfalt ohnegleichen. Schließlich legen Planck mit der Quantentheorie und Einstein mit den beiden Relativitätstheorien die Grundlagen unseres heutigen Weltbilds, in dem die Urknalltheorie den Beginn unserer Raumzeit vor etwa 14 Milliarden Jahren anzeigt, aber auch die Frage aufkommt, ob hinter der Entwicklung des Universums, wie wir es heute verstehen, eine zielgerichtete Strategie hin zur Existenz des Menschen steckt oder ob diese Entwicklung ein bloßer Zufall äußerst geringer Wahrscheinlichkeit ist.
"Proceedings of the 14th International Congress on Mathematical Education. Presents the latest trends in mathematics education research and mathematics teaching practices at all levels"--
This book demonstrates how a radical version of physicalism (`No-Self Physicalism¿) can offer an internally coherent and comprehensive philosophical worldview. It first argues that a coherent physicalist should explicitly treat a cognitive subject merely as a physical thing and should not vaguely assume an amorphous or even soul-like subject or self. This approach forces the physicalist to re-examine traditional core philosophical notions such as truth, analyticity, modality, apriority because our traditional understandings of them appear to be predicated on a cognitive subject that is not literally just a physical thing.In turn, working on the assumption that a cognitive subject is itself completely physical, namely a neural network-based robot programmed by evolution (hence the term `No-Self¿), the book proposes physicalistic theories on conceptual representation, truth, analyticity, modality, the nature of mathematics, epistemic justification, knowledge, apriority and intuition, as well as a physicalistic ontology. These are meant to show that this No-Self Physicalism, perhaps the most minimalistic and radical version of physicalism proposed to date, can accommodate many aspects that have traditionally interested philosophers. Given its refreshingly radical approach and painstakingly developed content, the book is of interest to anyone who is seeking a coherent philosophical worldview in this age of science.
Der Band enthält eine umfassende und problemorientierte Darstellung der antiken griechischen Mathematik von Thales bis zu Proklos Diadochos. Exemplarisch wird ein Querschnitt durch die griechische Mathematik geboten, wobei auch solche Werke von Wissenschaftlern ausführlich gewürdigt werden, von denen keine deutsche Übersetzung vorliegt. Zahlreiche Abbildungen und die Einbeziehung des kulturellen, politischen und literarischen Umfelds liefern ein großartiges Spektrum der mathematischen Wissenschaftsgeschichte und eine wahre Fundgrube für diejenigen, die biographisches und zeitgeschichtliches Hintergrundwissen suchen oder Anregungen für Unterricht bzw. Vorlesung. Die Darstellung ist aktuell und realisiert Tendenzen neuerer Geschichtsschreibung. In der Neuauflage konnten die zentralen Kapitel über Platon, Aristoteles und Alexandria aktualisiert werden. Die Ausführungen zur griechischen Rechentechnik, mathematischen Geographie und Mathematik des Frühmittelalters wurden erweitert und zeigen neue Gesichtspunkte. Völlig neu hinzugekommen ist eine einzigartige, illustrierte Darstellung der Römischen Mathematik. Neu aufgenommen sind auch mehrere Farbabbildungen, die die Thematik des Buches gelungen veranschaulichen. Mit mehr als 280 Bildern stellt der vorliegende Band ein reich bebildertes Geschichtsbuch zur antiken Mathematik dar.
In this two-volume compilation of articles, leading researchers reevaluate the success of Hilbert's axiomatic method, which not only laid the foundations for our understanding of modern mathematics, but also found applications in physics, computer science and elsewhere.The title takes its name from David Hilbert's seminal talk Axiomatisches Denken, given at a meeting of the Swiss Mathematical Society in Zurich in 1917. This marked the beginning of Hilbert's return to his foundational studies, which ultimately resulted in the establishment of proof theory as a new branch in the emerging field of mathematical logic. Hilbert also used the opportunity to bring Paul Bernays back to Gottingen as his main collaborator in foundational studies in the years to come.The contributions are addressed to mathematical and philosophical logicians, but also to philosophers of science as well as physicists and computer scientists with an interest in foundations.Chapter 8 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
In this two-volume compilation of articles, leading researchers reevaluate the success of Hilbert's axiomatic method, which not only laid the foundations for our understanding of modern mathematics, but also found applications in physics, computer science and elsewhere.The title takes its name from David Hilbert's seminal talk Axiomatisches Denken, given at a meeting of the Swiss Mathematical Society in Zurich in 1917. This marked the beginning of Hilbert's return to his foundational studies, which ultimately resulted in the establishment of proof theory as a new branch in the emerging field of mathematical logic. Hilbert also used the opportunity to bring Paul Bernays back to Gottingen as his main collaborator in foundational studies in the years to come.The contributions are addressed to mathematical and philosophical logicians, but also to philosophers of science as well as physicists and computer scientists with an interest in foundations.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.