Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In recent years, the interaction between harmonic analysis and convex geometry has increased which has resulted in solutions to several long-standing problems. This collection is based on the topics discussed during the Research Semester on Harmonic Analysis and Convexity at the Institute for Computational and Experimental Research in Mathematics in Providence RI in Fall 2022. The volume brings together experts working in related fields to report on the status of major problems in the area including the isomorphic Busemann-Petty and slicing problems for arbitrary measures, extremal problems for Fourier extension and extremal problems for classical singular integrals of martingale type, among others.
Neste livro, são realizados exercícios sobre os seguintes tópicos matemáticos:Plano cartesiano e translaçõeslinha no plano cartesianocônicas no plano cartesiano (parábola, circunferência, elipse, hipérbole)Também são apresentadas dicas teóricas iniciais para tornar a execução dos exercícios compreensível
Dans ce livre, des exercices sont réalisés sur les sujets mathématiques suivants :généralisation de la géométrie analytique dans le plangéométrie analytique dans l'espacelongueur et régularité d'une courbecaractérisation paramétrique au niveau géométriqueDes conseils théoriques initiaux sont également présentés pour faire comprendre l'exécution des exercices
En este libro se realizan ejercicios sobre los siguientes temas matemáticos:generalización de la geometría analítica en el planogeometría analítica en el espaciolongitud y regularidad de una curvacaracterización paramétrica a nivel geométricoTambién se presentan indicaciones teóricas iniciales para que se entienda la realización de los ejercicios.
En este libro se realizan ejercicios sobre los siguientes temas matemáticos:Plano cartesiano y traslaciones.línea en el plano cartesianocónicas en el plano cartesiano (parábola, circunferencia, elipse, hipérbola)También se presentan sugerencias teóricas iniciales para hacer comprensible la realización de los ejercicios.
Dans ce livre, des exercices sont réalisés sur les sujets mathématiques suivants :Plan cartésien et translationsdroite dans le plan cartésienconiques dans le plan cartésien (parabole, circonférence, ellipse, hyperbole)Des conseils théoriques initiaux sont également présentés pour rendre compréhensible l'exécution des exercices
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory of random sets was founded by D. Kendall and G. Matheron in the early 1970's. Its rapid development was influenced by applications in Spatial Statistics and by its close connections to Integral Geometry. The volume "Stochastic Geometry" contains the lectures given at the CIME summer school in Martina Franca in September 1974. The four main lecturers covered the areas of Spatial Statistics, Random Points, Integral Geometry and Random Sets, they are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents an up-to-date description of important parts of Stochastic Geometry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.