Vi bøger
Levering: 1 - 2 hverdage

Materialer / stoffaser

Her finder du spændende bøger om Materialer / stoffaser. Nedenfor er et flot udvalg af over 161 bøger om emnet. Det er også her du finder emner som Tilstandsformer.
Vis mere
Filter
Filter
Sorter efterSorter Populære
  • af A.V. Khotkevich
    1.603,95 - 1.612,95 kr.

    The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in contacts. Until recently it was thought that the electrical conductivity of contacts with direct conductance (without tunneling or semiconducting barriers) obeyed Ohm's law. Nonlinearities of the current-voltage characteristics were explained by joule heating of the metal in the region of the contact. However, studies of the current-voltage characteristics of metallic point contacts at low (liquid helium) temperatures [142] showed that heating effects were negligible in many cases and the nonlinear characteristics under these conditions were observed to take the form of the energy dependent probability of inelastic electron scattering, induced by various mechanisms.

  • af Aldo R. Boccaccini & James H. Dickerson
    1.620,95 kr.

  • af Richard Catlow
    3.115,95 - 3.121,95 kr.

    The study of defects and disorder in solids remains a central topic in solid state science. Developments in the field continue to be promoted by new experimental and theoretical techniques, while further impetus for the study of disorder in solids is provided by the growing range of applications of solid state materials in which disorder at the atomic level plays a crucial rOle. In this book we attempt to present a survey of fundamental and applied aspects of the field. We consider the basic aspects of defective crystalline and amorphous solids. We discuss recent studies of structural, electronic, transport, thermodynamic and spectroscopic properties of such materials. Experimental and theoretical methodologies are reviewed, and detailed consideration is given to materials such as fast ion conductors and amorphous semiconductors that are of importance in an applied context. Any survey of this large field is necessarily selective. We have chosen to emphasise insulating (especially oxidic) and semi-conducting materials. But many of the approaches and techniques we describe apply generally across the entire field of solid state science. This volume is based on a NATO ASI held at the Residencia Santa Teresa de Jesus, Madrid in September 1991. The Editor is grateful to the NATO Scientific Affairs Division for their sponsorship of this School. Thanks are also due to all who participated in and lectured at the school, but especially to the organising committee of A. V. Chadwick, G. N. Greaves, M. Grigorkiewicz, J. H. Harding and S. Kalbitzer. C. R. A.

  • af Yurii Aleksandrovich Izyumov & V. N. Syromyatnikov
    3.108,95 - 3.116,95 kr.

  • af Paolo Maria Mariano & Gianfranco Capriz
    547,95 - 556,95 kr.

  • af F. A. Lévy, H. Aoki, M. Schlüter & mfl.
    2.092,95 - 2.100,95 kr.

  • af R. McWeeny, S. Wilson, Y. G. Smeyers & mfl.
    1.624,95 - 1.631,95 kr.

  • af Teodor M. Atanackovic & Ardeshir Guran
    1.065,95 - 1.074,95 kr.

  • af Shaul M. Aharoni
    981,95 kr.

    Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi­ crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal­ line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load­ bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.

  • af Alexander Govorov
    530,95 kr.

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  • af H. G. Grimmeiss & A. R. Peaker
    2.076,95 kr.

  • af Richard M. More
    2.091,95 - 2.112,95 kr.

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include multiphoton ionization processes, atomic collisions in the presence of a strong laser field, Coulomb explosion following rapid ionization of a molecule and the production of high harmonics of the laser source. Another important topic reviewed in this ASI is the lasercooling ofatoms.

  • af N. Garcia & P. A. Serena
    2.092,95 - 2.096,95 kr.

  • af Gerd Schön, Lydia L. Sohn & Leo P. Kouwenhoven
    5.022,95 kr.

    Ongoing developments in nanofabrication technology and the availability of novel materials have led to the emergence and evolution of new topics for mesoscopic research, including scanning-tunnelling microscopic studies of few-atom metallic clusters, discrete energy level spectroscopy, the prediction of Kondo-type physics in the transport properties of quantum dots, time dependent effects, and the properties of interacting systems, e.g. of Luttinger liquids. The overall understanding of each of these areas is still incomplete; nevertheless, with the foundations laid by studies in the more traditional systems there is no doubt that these new areas will advance mesoscopic electron transport to a new phenomenological level, both experimentally and theoretically. Mesoscopic Electron Transport highlights selected areas in the field, provides a comprehensive review of such systems, and also serves as an introduction to the new and developing areas of mesoscopic electron transport.

  • - Fundamentals and Applications
    af E. Kiran
    2.118,95 - 2.127,95 kr.

    Supercritical fluids are neither gas nor liquid, but can be compressed gradually from low to high density and they are therefore interesting and important as tunable solvents and reaction media in the chemical process industry. By adjusting the density the properties of these fluids can be customised and manipulated for a given process - physical or chemical transformation. Separation and processing using supercritical solvents such as CO2 are currently on-line commercially in the food, essential oils and polymer industries. Many agencies and industries are considering the use of supercritical water for waste remediation. Supercritical fluid chromatography represents another, major analytical application. Significant advances have recently been made in materials processing, ranging from particle formation to the creation of porous materials.The chapters in this book provide tutorial accounts of topical areas centred around: (1) phase equilibria, thermodynamics and equations of state; (2) critical behaviour, crossover effects; (3) transport and interfacial properties; (4) molecular modelling, computer simulation; (5) reactions, spectroscopy; (6) phase separation kinetics; (7) extractions; (8) applications to polymers, pharmaceuticals, natural materials and chromatography; (9) process scale-up.

  • af Joseph Masters And Company
    235,95 kr.

  • af Paulo Augusto Dal Fabbro
    1.056,95 kr.

    The RF power amplifier is a key component in a wireless transceiver and is considered by many as the design bottleneck in the transmitting chain. Linear CMOS RF Power Amplifiers for Wireless Applications addresses two fundamental aspects in RF power amplifier design for integration in CMOS technologies at 2.4, 3.7 and 5.2 GHz: efficiency enhancement and frequency agility.The well-known linearity-efficiency trade-off is circumvented by employing an efficiency-enhancement technique called the dynamic supply RF power amplifier. The design of this system is described with great detail and compared with other efficiency enhancement techniques.The frequency agility is achieved with a novel impedance matching network based on coupled inductors. The design of a dual-band RF power amplifier is shown, with a careful analysis of the tunable matching network and its interaction with the rest of the circuit.The considerations and conclusions drawn throughout this book are based on simulation as well as measurement results from the integrated circuit prototypes carefully built and respecting best practices in RF design.

  • af Søren Fournais
    560,95 kr.

    During the past decade, the mathematics of superconductivity has been the subject of intense activity. This book examines in detail the nonlinear Ginzburg–Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg–Landau parameter kappa. Key topics and features of the work: * Provides a concrete introduction to techniques in spectral theory and partial differential equations * Offers a complete analysis of the two-dimensional Ginzburg–Landau functional with large kappa in the presence of a magnetic field * Treats the three-dimensional case thoroughly * Includes open problems Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.

  • af Franz Schwabl
    606,95 kr.

    Die dritte Auflage der Quantenmechanik fur Fortgeschrittene wurde grundlegend uberarbeitet und behandelt die weiterfuhrenden Themen Vielteilchensysteme, Relativistische Wellengleichungen und Relativistische Felder. Die bereits in der Quantenmechanik des gleichen Autors uberzeugende stringente mathematische Darstellung wird durch die Angabe aller Zwischenschritte, durch zahlreiche Anwendungsbeispiele im Text und Ubungen erganzt. Der Text legt insbesondere durch Darstellung der relativistischen Wellengleichungen und ihrer Symmetrieeigenschaften sowie der quantenfeldtheoretischen Grundlagen das Fundament fur das weitere Studium von Festkorperphysik, Kern- und Elementarteilchenphysik und ist im gesamten Hauptstudium ein unentbehrlicher Begleiter.

  • af Paul Jespers
    1.335,95 kr.

    How to determine transistor sizes and currents when the supply voltages of analog CMOS circuits do not exceed 1.2V and transistors operate in weak, moderate or strong inversion? The gm/ID methodology offers a solution provided a reference transconductance over drain current ratio is available. The reference may be the result of measurements carried out on real physical transistors or advanced models. The reference may also take advantage of a compact model. In The gm/ID Methodology, a Sizing Tool for Low-Voltage Analog CMOS Circuits, we compare the semi-empirical to the compact model approach. Small numbers of parameters make the compact model attractive for the model paves the way towards analytic expressions unaffordable otherwise. The E.K.V model is a good candidate, but when it comes to short channel devices, compact models are either inaccurate or loose straightforwardness. Because sizing requires basically a reliable large signal representation of MOS transistors, we investigate the potential of the E.K.V model when its parameters are supposed to be bias dependent. The model-driven and semi-empirical methods are compared considering the Intrinsic Gain Stage and a few more complex circuits. A series of MATLAB files found on extras-springer.com allow redoing the tests.

  • af R. Kossowsky
    1.654,95 kr.

    This book contains most, but regrettably not all, the papers that were presented at the Advanced Research Study Institute, ASI, held at the Fantasia Hotel, Kusadasi, Turkey, July 26 - August 8, 1998. A powerful incentive to the development of vortex physics in superconductors, that has began with Abrikosov Vortices in Shubnikov's Mixed State, was realized after the discovery of the high-Tc superconductivity. Indeed, a number of the most intriguing phenomena and states of the flux line lattice are observed in high-Tc superconducting materials due to their high anisotropy, intrinsically layered crys­ tal structure, extremely small coherence length and the possibility of coexistence of superconducting vortex states with high-energy thermal fluctuation. These pe­ culiarities are demonstrated as the 2D flux line lattice of point-vortices (pan­ cakes), Josephson vortices or strings in parallel and/or tilted magnetic fields, flux line lattice melting into vortex liquid and its freezing into vortex "solid" (e. g. , crystal-or glass-like) state. It is well known, that the main reason for conditioning of the vortex ensemble state and behavior (except the extrinsic factors, such as applied magnetic field or temperature) is a set of intrinsic/extrinsic superconduct­ ing material properties caused by the crystal nature and symmetry, atoms ar­ rangement, anisotropy, as well as by the spectrum of crystal defects, their dimen­ sions, arrangement and density.

  • af Byung Chan Eu
    1.630,95 kr.

    In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids. The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics. The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium. Audience: This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena.

  • af Michael D. Kaplan & Benjamin G. Vekhter
    975,95 kr.

    This book by Kaplan and Vekhter brings together the molecular world of the chemist with the condensed matter world of the physicist. Prior to the collapse of the Soviet Union, chemists in the West devoted lit­ to relationships between molecular electronic structure and tle attention solid-state vibronic phenomena. Treating quantum mechanical problems wherein the adiabatic Born-Oppenheimer approximation fails was done by "brute force. " With bigger and better computers available in the West, molecular orbital calculations were done on observed and conceived static structures with little concern for any cooperativity of vibrational behavior that might connect these states. While it had long been understood in the West that situations do occur in which different static structures are found for molecules that have identical or nearly identical electronic structures, little attention had been paid to understanding the vibrational states that could connect such structures. It was easier to calculate the electronic structure observed with several possible distortions than to focus on ways to couple electronic and vibrational behavior. In the former Soviet Union, computational power was not as acces­ sible as in the West. Much greater attention, therefore, was devoted to conserving computational time by considering fundamental ways to han­ dle the vibrational connectivity between degenerate or nearly degenerate electronic states.

  • af Rolf Prümmer
    488,95 kr.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.