Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book shows how the analytic properties in the complex energy plane of the Green's functions of many particle systems account for the physical effects (level shifts, damping, instabilities) characteristic of interacting systems. It concentrates on general physical principles and, while it does not discuss experiments in detail, includes introductions to topics of current research interest, such as singularities (X-ray, Kondo) associated with transient perturbations in an electron gas, the Mott metal-insulator transition in correlated electron systems, and the phenomenon of high Tc superconductivity.This invaluable book grew out of a course of graduate lectures given by S Doniach at the University of London. It will appeal to beginning graduate students in theoretical solid state physics as an introduction to more comprehensive or more specialized texts and also to experimentalists who would like a quick view of the subject. A basic knowledge of solid state physics and quantum mechanics at graduate level is assumed.
Piezoelectric and thermoelectric materials represent emerging cutting-edge technological materials for energy harvesting for high-value-added applications. Although these materials have been exhaustively exploited for decades, researchers around the world continue to find technological and scientific innovations that must be disseminated to the engineers of yesterday, today, and tomorrow. Piezoelectric materials, through mechanical stresses applied to them, are capable of generating electricity, while thermoelectric materials are capable of producing electricity thanks to the heat applied to them. Therefore, the direct application of these materials is in energy harvesting, which, together with the reduction of materials, leads them to portable and wearable functional applications. The purpose of this work is to disseminate some of the latest scientific and technological advances by different researchers around the world in the development of devices and applications based on these materials. The book compiles state-of-the-art fundamentals, current uses, as well as emerging applications of piezoelectric and thermoelectric materials. It is a source of inspiration for continued scientific research on the commercial, industrial, and military applications of these materials. Furthermore, it is a valuable and informative resource for undergraduate and graduate students, as well as experts and researchers in the field.
This book highlights the photogalvanic effects at low dimensions, surfaces, and interfaces, more specifically 2D materials, such as graphene and monolayer transition metal dichalcogenides. Although the phenomenology of the photogalvanic effects, which can be simply seen as photoresponse nonlinear-in-electric field, have been well-established, the microscopic understanding in each material system may vary. This book is a quick reference and a detailed roadmap starting from phenomenology and continuing with the ultimate low dimensional materials, in which the photogalvanic effects can offer a rich platform at the second-order response to an electric field. A general phenomenology of photogalvanic effect is provided in the first chapter, together with the photon drag effect which also generates a photocurrent like the photogalvanic effect, but with some distinct features, as well as somewhat puzzling similarities. Next two chapters explain these effects in graphene, starting with a necessary related background on graphene, then a particular focus on its specific phenomenology, microscopic theory, and experimental results. In a similar fashion, in chapters four and five, a necessary background for the photogalvanic effects in monolayer transition metal dichalcogenides, with symmetry analysis, microscopic theory, and experimental results is presented, along with the Berry curvature dependent photocurrent, which can also play an important role in 2D semiconductors. The second-order photogalvanic effects that have been covered so far in graphene and monolayer transition metal chalcogenides have already excited the 2D semiconductor optoelectronic research community by several means. It seems that the interests on the photogalvanic effects will continue to escalate in near future.
This book leads students to learn electromagnetism and then moves to chapters about electric circuits. It aims to give an understanding of electromagnetism which gives a fast way to master the features of circuit elements such as resistors, capacitors, and coils that compose electric circuits. The author provides chapters on electromagnetism and electric circuits separately and gives a chapter explaining the correlation between them in detail.In the chapters for electric circuit, DC electric circuits, transient and steady response of AC electric circuits are treated. AC circuit theory is introduced for describing the phenomena in circuits. Theoretical treatments such as branch current method, closed current method, and node potential method are also introduced to show the validity of solution methods that have been used in the book. The book can serve as a compact textbook for lectures, as an introduction for hardware system and electric control systems, and mechanical systems. Chapters for electromagnetism or ones for electric circuits are suitable for a lecture over a semester.
This book provides a single-source reference for any reader requiring basic and advanced information on wide bandgap semiconductors and related design topics. Focusing on practicability, it explains the principles of GaN and SiC semiconductors, manufacturing, characterization, market and design for key applications.
This book presents a comprehensive overview of density functional theory (DFT), from its basics to its practical application and implementation. It also discusses the breakthroughs in the field and the complete integration of physical and chemical aspects. It examines both orbital and time-dependent functions along with their variations according to semiquantitative analysis. The book also discusses analytical and computational techniques and principles, considering the classical and quantum approaches. Also covered are important topics such as HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), MEP (minimum energy paths), KS-DFT (Kohn-Sham density functional theory), UHFD (Unrestricted Hartree-Fock-Dirac), and Gaussian methods.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 10th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2022), which was held in hybrid format on August 25-27, 2022 at Lviv House of Scientists, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, synthesis and their applications.The book will be interesting for leading scientists, advanced undergraduate and graduate students in material and nanoscience. This book¿s companion volume also addresses topics such as nano-optics, nanoelectronics,energy storage, nanochemistryl and biomedical applications.
This concise book reviews methods used for gluing space-time manifolds together. It is therefore relevant to theorists working on branes, walls, domain walls, concepts frequently used in theoretical cosmology, astrophysics, and gravity theory. Nowadays, applications are also in theoretical condensed matter physics where Riemannian geometry appears. The book also reviews the history of matching conditions between two space-time manifolds from the early times of general relativity up to now.
This book addresses the possibilities provided by scattering techniques in the study of soft matter. It fills the gap between the fundamental scattering processes, which are described by the general theoretical framework of elastic and quasi-elastic interaction of radiation with matter, and state-of-the-art applications to specific soft matter systems. Three probes are discussed in detail: neutrons, X-ray photons, and visible light.Part 1 of the book is dedicated to the use of general principles for the measurement and analysis of scattered intensity: elementary scattering process, data reduction, general theorems, the concept of reciprocal space, and its link to structural and dynamical information in direct space. In Part 2, methods and techniques are further discussed, including resolution effects, contrast variation, static and dynamic light scattering, quasielastic neutron scattering, and reflectometry and grazing incidence techniques. Part 3 deals with the state of the art of scattering studies of typical soft matter systems (polymers, self-assembled surfactant systems and liquid crystals, microemulsions, colloids, aggregates, biological systems) with dedicated chapters for particle interactions and modeling. Part 4 highlights special applications, from light scattering in turbid media to scattering under external constraints, applications of neutron reflectometry, characterization of relaxation modes by neutron spectroscopy, and industrial applications.This new edition, written by the lecturers of the Bombannes Summer School, will be most useful as a learning tool for masters and PhD students, postdocs, and young researchers moving into the field. As with the previous edition, it will also be a reference for any scientist working in soft matter, where scattering techniques are ubiquitous, used in both small laboratories and large-scale research facilities.
This book provides readers with a comprehensive, state-of-the-art reference to the design automation aspects of quantum computers. Given roadmaps calling for quantum computers with 2000 qubits in a few years, readers will benefit from the practical implementation aspects covered in this book. The authors discuss real hardware to the extent possible.Provides an up-to-date, single-source reference to design automation aspects of quantum computers;Presentation is not just theoretical, but substantiated with real quantum hardware;Covers multi-faceted aspects of quantum computers, providing readers with valuable information, no matter the direction in which technology moves.
This thesis outlines the principles, device physics, and technological applications of electronics based on the ultra-wide bandgap semiconductor aluminum nitride. It discusses the basic principles of electrostatics and transport properties of polarization-induced two-dimensional electron and hole channels in semiconductor heterostructures based on aluminum nitride. It explains the discovery of high-density two-dimensional hole gases in undoped heterojunctions, and shows how these high conductivity n- and p-type channels are used for high performance nFETs and pFETs, along with wide bandgap RF, mm-wave, and CMOS applications. The thesis goes on to discuss how the several material advantages of aluminum nitride, such as its high thermal conductivity and piezoelectric coefficient, enable not just high performance of transistors, but also monolithic integration of passive elements such as high frequency filters, enabling a new form factor for integrated RF electronics.
Dieses Buch gibt einen Überblick über die wichtigsten Bereiche zur Entwicklung und Konstruktion elektronischer Geräte, zusammengefasst unter dem Begriff Elektronik Design, und beginnt mit der Bereitstellung des Stromlaufplans.In zunehmendem Maße erfordert die Realisierung von Elektronik durch immer kleinere Bauelemente, die direkte Verarbeitung von Halbleiterchips, zunehmende Taktfrequenzen und Verlustleistungen interdisziplinäre Betrachtungen von Design, Technologien und Werkstoffen. Aus diesem Grund wurde den Darstellungen der Technologien größerer Raum gegeben.Die Kapitel sind so gestaltet, dass sie auch einzeln für sich gelesen werden können. Einige Inhalte sind in mehreren Kapiteln zu finden, da eindeutige Zuordnungen nicht immer möglich oder sinnvoll sind.
This book showcases the state of the art in the field of electronics, as presented by researchers and engineers at the 54th Annual Meeting of the Italian Electronics Society (SIE), held in Noto (SR), Italy, on September 6¿8, 2023. It covers a broad range of aspects, including: integrated circuits and systems, micro- and nano-electronic devices, microwave electronics, sensors and microsystems, optoelectronics and photonics, power electronics, electronic systems and applications.
This book covers the new field of straintronics, using strain switched nanomagnets for extremely energy-efficient computing, information processing, communication, and signal generation. Based on well-established CMOS technology, traditional electronics have two significant shortcomings: excessive energy dissipation and volatility, which is the inability to retain information after power has been switched off. Straintronics is more energy-efficient and non-volatile (but also more error-prone), allowing it to eclipse traditional electronics in niche areas that are increasingly attracting attention, such as image processing and probabilistic computing, computer vision, machine learning, neuromorphic networks, probabilistic computing, and belief networks. Magnetic Straintronics: An Energy-Efficient Hardware Paradigm for Digital and Analog Information Processing introduces straintronics and the technology's myriad applications for researchers, engineers, and scientists in electrical engineering, physics, and computer engineering.
The scientific and commercial purposes of ion beams are remarkable in many fields because ion beam technology is a primary tool that provides a wide range of applications in science, medicine, space, and engineering. This book presents theoretical and experimental knowledge about ion beam applications and technology. It includes six chapters that address such topics as the interaction of ion beams with matter, the evaluation of nuclear material damage, surface microstructure changes, oblique Ar+ sputtered SiC thin films, electron beam processing, and ribbon ion beams.
This comprehensive guide invites nations worldwide to embark on a transformative journey, implementing independent third-party verification systems that ensure medical devices comply with both international and national regulations. Prepare to be captivated as we delve into the intricate processes, unveil essential procedures, and illuminate the paramount importance of establishing traceability for medical device measurements.Imagine a world where medical devices undergo rigorous independent safety and performance verification, guaranteeing the utmost reliability for patient diagnoses and treatment. This book takes you on a compelling exploration of precisely that vision. Focusing on cutting-edge diagnostic and therapeutic devices, it captures the very essence of the latest international directives and regulations, ensuring you stay ahead of the curve.This new edition goes beyond the conventional, delving into the realms of innovation and progress. Unveiling in-depth maintenance regimes within healthcare institutions, we provide you with invaluable insights into post-market surveillance. As the world embraces the transformative potential of artificial intelligence, we pave the way for evidence-based management of medical device maintenance¿a concept poised to reshape the healthcare landscape.Imagine a future where medical devices are seamlessly integrated into the legal metrology system, while fully operational national laboratories for medical device inspection set new standards of excellence. This book vividly illustrates how such a powerful union can elevate the reliability of medical devices in diagnosis and patient care. Brace yourself for a paradigm shift that not only enhances efficacy but also leads to significant cost reductions within your country's healthcare system.Join us on this extraordinary journey as we unveil the untapped potential of medical device inspection. With our innovative approach and unrivaled expertise, together we can revolutionize healthcare, transforming the lives of countless patients worldwide. Get ready to be inspired, informed, and empowered¿welcome to the future of healthcare!
This book presents a summary of the topic of supercooling during crystallization in condensed films. While recent findings are mainly published in English, the foundational classical results were originally published in Russian, with limited accessibility to general readers. The present work is based on a 2019 Ukrainian monograph, "Temperature Stability of the Supercooled Liquid Phase in Condensed Films," which has been extensively revised and expanded.The book includes a detailed analysis of the thermodynamics of supercooled fluids, with updated and expanded sections. Additionally, new results on the supercooling of indium-lead (In-Pb) alloys in contact with amorphous molybdenum and fusible metals in contact with nanocrystalline layers are presented. These layers occupy a middle ground between amorphous (carbon, molybdenum, as-deposited germanium films) and polycrystalline (copper, silver, aluminum) substrates. The book gives particular attention to the peculiarities of contracted geometry conditions, which are natural for multilayered structures and can occur through fusible component segregation at grain boundaries.The analysis of new data has prompted a rethinking of the role of the more refractory layer's microstructure on the crystallization processes of metastable melts. The book includes a thorough discussion of these findings, highlighting the crucial role of the microstructure in the crystallization process. This book is a valuable resource for researchers and students interested in crystallization in thin-film metallic systems. This comprehensive study provides a detailed and authoritative analysis of the thermodynamics of supercooled fluids, and the impact of microstructure on the crystallization processes of metastable melts, making it an essential addition to any academic library.
This book consists of chapters written by international experts on various aspects of single molecule toroics (SMTs).The chapters cover a broad range of relevant topics and highlight the latest advances performed in the field. An up-to-date overview of the emerging SMT architectures is presented while particular attention is given to not only the magnetism and relaxation effects involved but also to the respective applications in advanced electronics and memory devices. The role that lanthanides play -especially that of dysprosium- is discussed, while a thorough analysis using theoretical/ab initio calculations is provided. Since SMTs have grown out of single molecule magnetism (SMM), it is an expanding and topical subject and the present book will engender excitement and interest amongst chemists, physicists, theoreticians and materials scientists. The volume will be of great interest to researchers and graduates working on this topic and particularly those involved in lanthanide chemistry, magnetism and theory.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.