Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In recent years, nanoelectronics has become very interdisciplinary requiring students to master aspects of physics, electrical engineering, chemistry etc. The 2nd edition of this textbook is a comprehensive overview of nanoelectronics covering the necessary quantum mechanical and solid-state physics foundation, an overview of semiconductor fabrication as well as a brief introduction into device simulation using the non-equilibrium Greens function formalism. Equipped with this, the work discusses nanoscale field-effect transistors and alternative device concepts such as Schottky-barrier MOSFETs as well as steep slope transistors based on different materials. In addition, cryogenic operation of MOSFETs for the realization of, e.g., classical control electronics of semiconducting spin qubits is studied. The work contains a number of tasks, examples and exercises with step-by-step video solutions as well as tutorial videos that deepen the understanding of the material. With additional access to simulation tools that allow students to do computational experiments, the emphasis is on thorough explanation of the material enabling students to carry out their own research.
This book enables readers to become familiar with passive and active realizations of the impedances and important filter transfer functions (TFs). Firstly, time, s, and frequency domain analysis of the R-L, R-C, and R-L-C circuits are discussed. Then, active realizations of the impedances and TFs using different active devices are introduced. Readers will benefit from an example-driven approach to topics such as operational amplifiers, current followers, voltage followers, unity gain inverting amplifiers, negative impedance converters, first-generation current conveyors, second-generation current conveyors, third-generation current conveyors, differential voltage current conveyors, etc. will be introduced, which will be accompanied with a number of examples. Non-ideal gain effects on the performance of the active circuits are also demonstrated.
This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including both fabrication and characterization. With its coverage of fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.
This new edition has been thoroughly revised, expanded and contain some updates function of the novel results and shift of scientific interest in the topics. The book has a Foreword by Jerry L. Bona and Hongqiu Chen. The book is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems.The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given.The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics.This book is intended for graduate students and researchers in mathematics, physics and engineering.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 10th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2022), which was held on August 25-27, 2022 at Lviv House of Scientists, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings across diverse areas ranging from quantum optics and nanoelectonics to biophysics.The book will be interesting for leading scientists, advanced undergraduate and graduate students in nanoelectronics, optics, bio-and chemical engineering. This book¿s companion volume also addresses topics such as nanostructured surface, nanomaterials, and its applications.
This book provides expert coverage of the current state of the art in the application of nanotechnologies to cellulose research. It offers a comprehensive collection of topics including nanocellulose isolation, assembly into hierarchical structures, and advanced emerging applications. During the past decades, research in nanocellulose has advanced quickly, driven by the urgent needs for sustainability and the availability of advanced nanotechniques. Although cellulose has been investigated and used for thousands of years, the recent advances in nanotechnology have transformed our view of this natural substance. Cellulose, when present in the highly crystalline nanoscale form, can demonstrate interesting mechanical, optical, and fluidic properties that can be manipulated in designing materials with novel applications.This book contains 12 chapters. Chapter 1 focuses primarily on the fundamentals of nanocellulose, including general aspects on its structure, isolation, and characterization. Chapters 2-4 summarize the recent progress on assembly of nanocellulose into the macroscopic scale using state-of-the-art techniques. Chapters 5-13 cover the most advanced applications of nanocellulose in emerging areas, including superstrong materials, light management, electronics, energy storage, printed battery, water treatment, nanogenerator, and biomedicine. The book will appeal to upper undergraduate and graduate students through practicing researchers as a comprehensive reference on the subject of nanocellulose and its use in various fields.
This book is a comprehensive, all-in-one source on design of monolithic GaN power ICs. It is written in handbook style with systematic guidelines and includes implementation examples. It covers the full range from technology fundamentals to implementation details including design techniques specific for GaN technology. It provides a detailed loss analysis based on comparative measurements between silicon and GaN based converters to provide an understanding of the relations between design choices and results which can be transferred to other power converter systems.
This book provides a detailed introduction to near-sensor and in-sensor computing paradigms, their working mechanisms, development trends and future directions. The authors also provide a comprehensive review of current progress in this area, analyze existing challenges in the field, and offer possible solutions. Readers will benefit from the discussion of computing approaches that intervene in the vicinity of or inside sensory networks to help process data more efficiently, decreasing power consumption and reducing the transfer of redundant data between sensing and processing units.Provides readers with a detailed introduction to the near-sensor and in-sensor computing paradigms;Includes in-depth and comprehensive summaries of the state-of-the-art development in this field;Discusses and compares various neuromorphic sensors and neural networks:Describes integration technology for near-/in-sensor computing;Reveals the relationship between near-/in-sensor computing and other computing paradigms, such as neuromorphic computing, edge computing, intuitive computing, and in-memory computing.
The thesis presents a systematic study of the Mpemba effect in a colloidal system with a micron-sized particle diffusing in a water bath. While the Mpemba effect, where a system's thermal relaxation time is a non-monotonic function of the initial temperature, has been observed in water since Aristotle's era, the underlying mechanism of the effect is still unknown. Recent studies indicate that the effect is not limited to water and has been studied both experimentally and numerically in a wide variety of systems. By carefully designing a double-well potential using feedback-based optical tweezers, the author demonstrates that an initially hot system can sometimes cool faster than an initially warm system. The author also presents the first observation in any system of another counterintuitive effect-the inverse Mpemba effect-where the colder of the two samples reaches the thermal equilibrium at a hot temperature first. The results for both the observations agree with theoretical predictions based on the Fokker-Planck equation. The experiments reveal that, for carefully chosen conditions, a strong version of both of the effects are observed where a system can relax to the bath temperature exponentially faster than under typical conditions.
This book describes most recent progress in the properties, synthesis, characterization, modelling, and applications of nanomaterials and nanodevices. It begins with the review of the modelling of the structural, electronic and optical properties of low dimensional and nanoscale semiconductors, methodology of synthesis, and characterization of quantum dots and nanowires, with special attention towards Dirac materials, whose electrical conduction and sensing properties far exceed those of silicon-based materials, making them strong competitors. The contributed reviews presented in this book touch on broader issues associated with the environment, as well as energy production and storage, while highlighting important achievements in materials pertinent to the fields of biology and medicine, exhibiting an outstanding confluence of basic physical science with vital human endeavor. The subjects treated in this book are attractive to the broader readership of graduate and advanced undergraduate students in physics, chemistry, biology, and medicine, as well as in electrical, chemical, biological, and mechanical engineering. Seasoned researchers and experts from the semiconductor/device industry also greatly benefit from the book's treatment of cutting-edge application studies.
This updated, augmented third edition is aimed at hobbyists, students, engineers, and others who would like to learn more about the design and operation of electronic circuits used by guitarists. This book presents accessible qualitative and quantitative descriptions and analysis of a wide range of popular amplifier and effects circuits, along with basic design techniques allowing the reader to design their own circuits. The new edition further includes several additional circuits and topics suggested by readers of the previous editions, including noise gates, analog multipliers, the effects loop, and additional tube amplifier design examples.
Micro and nano devices are an integral part of modern technology. To address the requirements of the state-of-the-art technology, topics are selected from both chip-based and flexible electronics. A wide range of carbon materials including graphene, carbon nanotube, glass-like carbon, porous carbon, carbon black, graphite, carbon nanofiber, laser-patterned carbon and heteroatom containing carbon are covered. This goal is to elucidate fundamental carbon material science along with compatible micro- and nanofabrication techniques. Real-life example of sensors, energy storage and generation devices, MEMS, NEMS and implantable bioelectronics enable visualization of the outcome of described processes. Students will also benefit from the attractive aspects of carbon science explained in simple terms. Hybridization, allotrope classification and microstructural models are presented with a whole new outlook. Discussions on less-studied, hypothetical and undiscovered carbon forms render the contents futuristic and highly appealing.
This book examines in detail how a semiconductor device is designed and fabricated to satisfy best the requirements of the target application. The author presents and explains both basic and state-of-art semiconductor industry standards used in large/small signal equivalent circuit models for semiconductor devices that electronics engineers routinely use in their design calculations. The presentation includes detailed, step-by-step information on how a semiconductor device is fabricated, and the very sophisticated supporting technologies used in the process flow. The author also explains how standard laboratory equipment can be used to extract useful performance metrics of a semiconductor device.
The book has been designed as a textbook for graduate and postgraduate students of physics, material science, and engineering. This is the third edition of the textbook, that is updated to reflect recent works in the field. In this edition, some new topics have been introduced while some of the existing topics like phonons, Drude -Lorentz model, Fermi levels, electrons, and holes, etc. are modified. Moreover, the book has complete information on semiconductor devices like tunnel diode, Gunn diode, photodiode, photoconductive diode, varactor diode, solar cell, LED, semiconductor lasers, and semiconductor detectors. All the chapters have been supplemented by solved and unsolved examples. Some of the chapters illustrate areas of current interest in solid-state physics to give the student practical working knowledge of the subject text in a simple and lucid manner. There is a fair amount of detail in the examples and derivations given in the text. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in graduate and postgraduate courses of physics, material science, and engineering.
This book provides a comprehensive overview on the recent significant advancements of conductive polymers and their composites in terms of conductive mechanism, fabrication strategies, important properties, and various promising applications. The corresponding knowledge was systematically compiled in the logical order and demonstrated as seven chapters. The special structure, influencing factors of the conductivity, the charge carrier transport model, the wettability and classical categories of the conductive polymers are narrated. Both conventional and novel strategies undertaken to fabricate the conductive polymers are introduced, as provided the overall master of the progress. In comparison with the bulk counterpart, nanostructured conductive polymers with different dimensions such as nanospheres, nano-networks, nanotubes and nanowire arrays are produced through distinct methods, thus presenting unique and distinct performance endowed by the nanometer scale. The combination of conductive polymers with other functional materials results in a number of the composites with improved properties by synergistic effect. The superior performance of conductive polymers and their composites greatly facilitates their development toward various important applications in the advanced and sophisticated fields such as biological utilization, energy storage and sensors. Due to their excellent biocompatibility, conductive polymers and their composites stand out to be useful in the biological field including tissue engineering, drug delivery and artificial muscle. To meet the urgent demand of the energy storage, conductive polymers and their composites play an important role in the devices including supercapacitors, solar cells and fuel cells. Finally, development of conductive polymers and their composites in the modern industry is greatly enhanced by their applications in smart sensors such as conductometric sensors, gravimetric sensors, optical sensors, chemical sensors and biosensors. This book has significant value for researchers, graduate students, and engineers carrying out the fundamental research or industrial production of conductive polymers and their composites.
The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments.
This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena.Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.
This thesis describes in-depth studies of the remarkable electronic transport within the ultrahigh conductivity delafossite metals PtCoO_2 and PdCoO_2 using the tool of focused ion beam (FIB) microstucturing. Despite being first synthesised over 50 years ago, important questions remain regarding both the origin of the unusually high conductivity of these compounds and the consequences of their unique properties for unconventional electronic transport, such as that within the ballistic regime. The thesis explores both these areas.High-energy electron irradiation is used to examine the effects of deliberately introducing point defects into PdCoO_2 and PtCoO_2, demonstrating that the extremely low resistivity of these materials stems from an extreme purity as high as 1 defect in 120,000 atoms, rather than a novel scattering suppression mechanism. In addition, studies of the electronic transport in micron-scale squares of these metals show that their broadly hexagonal Fermi surfaces lead not only to long range ballistic behaviour but novel ballistic regime phenomena which cannot be observed in materials with a higher-symmetry Fermi surface.
This classroom-tested textbook provides a self-contained one-semester course in semiconductor physics and devices that is ideal preparation for students to enter burgeoning quantum industries. Unlike other textbooks on semiconductor device physics, it provides a brief but comprehensive introduction to quantum physics and statistical physics, with derivations and explanations of the key facts that are suitable for second-year undergraduates, rather than simply postulating the main results. The book is structured into three parts, each of which can be covered in around ten lectures. The first part covers fundamental background material such as quantum and statistical physics, and elements of crystallography and band theory of solids. Since this provides a vital foundation for the rest of the text, concepts are explained and derived in more detail than in comparable texts. For example, the concepts of measurement and collapse of the wave function, which are typically omitted, are presented in this text in language accessible to second-year students. The second part covers semiconductors in and out of equilibrium, and gives details which are not commonly presented, such as a derivation of the density of states using dimensional analysis, and calculation of the concentration of ionized impurities from the grand canonical distribution. Special attention is paid to the solution of Poisson's equation, a topic that is feared by many undergraduates but is brought back down to earth by techniques and analogies from first-year physics. Finally, in the third part, the material in parts 2 and 3 is applied to describe simple semiconductor devices, including the MOSFET, the Schottky and PN-junction diodes, and optoelectronic devices. With a wide range of exercises, this textbook is readily adoptable for an undergraduate course on semiconductor physics devices, and with its emphasis on consolidating and applying knowledge of fundamental physics, it will leave students in engineering and the physical sciences well prepared for a future where quantum industries proliferate.
This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.
This textbook presents the fundamental concepts and theories in solid-state engineering physics in a very simple, systematic, and comprehensive way. The book is written in a lucid manner so that students are able to understand the realization behind the mathematical concepts which are the backbone of this subject. All the subject fundamentals and related derivations are discussed in an easy and comprehensive way to make the students strong about the basics of the solid-state engineering physics. The philosophy of presentation and material content in the book are based on concept-based approach toward the subject. The key features also lie in the solutions of several interesting numerical problems so that the students should have the idea of the practical usages of the subject. The book will benefit students who are taking introductory courses in solid-state physics for engineering.
This thesis makes significant advances towards an understanding of superconductivity in the cuprate family of unconventional, high-temperature superconductors. Even though the high-temperature superconductors were discovered over 35 years ago, there is not yet a general consensus on an acceptable theory of superconductivity in these materials. One of the early proposals suggested that collective magnetic excitations of the conduction electrons could lead them to form pairs, which in turn condense to form the superconducting state at a critical temperature Tc. Quantitative calculations of Tc using experimental data were, however, not available to verify the applicability of this magnetic mechanism. In this thesis, the author constructed an angle-resolved photoemission apparatus that could provide sufficiently accurate data of the electronic excitation spectra of samples in the normal state, data which was furthermore unusually devoid of any surface contamination. The author also applied the Bethe-Salpeter method to his uncommonly pristine and precise normal state data, and was able to predict the approximate superconducting transition temperatures of different samples. This rare combination of experiment with sophisticated theoretical calculations leads to the conclusion that antiferromagnetic correlations are a viable candidate for the pairing interaction in the cuprate superconductors.
This book provides a comprehensive overview of positron profilometry, specifically focusing on the analysis of defect depth distribution in materials. Positron profilometry plays a crucial role in understanding and characterizing defects in a wide range of materials, including metals, semiconductors, polymers, and ceramics. By analyzing the depth distribution of defects, researchers can gain insights into various material properties, such as crystal structure, defect density, and diffusion behavior. The author's extensive research spanning a period of two decades has primarily centered on subsurface zones. These regions, located beneath the surface and subjected to various surface processes, play a crucial role in generating defect distributions. Three experimental techniques and their data analysis are described in detail: a variable-energy positron beam (VEP) called sometimes a slow positron beam, a technique called implantation profile depth scanning (DSIP), and a sequential etching(SET) technique. The usability of these techniques is illustrated by many examples of measurements by the author and others.
This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it.This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are also discussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.
This book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion.The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced.The 3rd edition has been thoroughly updated, with a new chapter on critical state model. The mechanism of irreversible properties is discussed in detail. The author provides calculations of pinning loss by the equation of motion of flux lines in the pinning potential and hysteresis loss. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. This book aims for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.