Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The book is about exact space-time models of the gravitational fields produced by gravitational radiation. The authors' extensive work in the field is reviewed in order to stimulate the study of such models, that have been known for a long time, and to highlight interesting physical aspects of the existing models in some novel detail. There is an underlying simplicity to the gravitational radiation studied in this book. Apart from the basic assumption that the radiation has clearly identifiable wave fronts, the gravitational waves studied are directly analogous to electromagnetic waves. The book is meant for advanced students and researchers who have a knowledge of general relativity sufficient to carry out research in the field.
What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect.Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons¿, are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules canvibrate in hundreds of possible ways, having a very strong effect on energy transfer.The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.
This book is a re-assessment of the structure and reach of symmetry, by an interdisciplinary group of specialists from the arts, humanities, and sciences at Oxford University. This book aims to open up the scope of interdisciplinary work in the study of symmetry and is intended for scholars of any background.
This book provides an up-to-date account of current research in quantum information theory, at the intersection of theoretical computer science, quantum physics, and mathematics. The book confronts many unprecedented theoretical challenges generated by infinite dimensionality and memory effects in quantum communication. The book will also equip readers with all the required mathematical tools to understand these essential questions.
This proceedings volume gathers selected, revised papers presented at the X International Meeting on Lorentzian Geometry (GeLoCor 2021), virtually held at the University of Cordoba, Spain, on February 1-5, 2021. It includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference. Taken together, the papers offer an invaluable introduction to key topics discussed at the conference and an overview of the main techniques in use today.This volume also gathers extended revisions of key studies in this field. Bringing new results and examples, these unique contributions offer new perspectives to the original problems and, in most cases, extend and reinforce the robustness of previous findings.Hosted every two years since 2001, the International Meeting on Lorentzian Geometry has become one of the main events bringing together the leading experts on Lorentzian geometry. In this volume, the reader will find studies on spatial and null hypersurfaces, low regularity in general relativity, conformal structures, Lorentz-Finsler spacetimes, and more.Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry.
This book describes the Hamilton-Jacobi formalism of quantum mechanics, which allowscomputation of eigenvalues of quantum mechanical potential problems without solving for thewave function. The examples presented include exotic potentials such as quasi-exactly solvablemodels and Lame an dassociated Lame potentials. A careful application of boundary conditionsoffers an insight into the nature of solutions of several potential models. Advancedundergraduates having knowledge of complex variables and quantum mechanics will find thisas an interesting method to obtain the eigenvalues and eigen-functions. The discussion oncomplex zeros of the wave function gives intriguing new results which are relevant foradvanced students and young researchers. Moreover, a few open problems in research arediscussed as well, which pose a challenge to the mathematically oriented readers.
"e;Can one hear the shape of a drum?"e; This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students.Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon-Webb-Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada-Berard-Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon-Webb-Wolpert domains from Buser surfaces and establishes their isospectrality.Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
This book aims at providing a solid basis for the education of the next generation of researchers in hot, dense QCD (Quantum ChromoDynamics) matter. This is a rapidly growing field at the interface of the smallest, i.e. subnuclear physics, and the largest scales, namely astrophysics and cosmology. The extensive lectures presented here are based on the material used at the training school of the European COST action THOR (Theory of hot matter in relativistic heavy-ion collisions).The book is divided in three parts covering ultrarelativistic heavy-ion collisions, several aspects related to QCD, and simulations of QCD and heavy-ion collisions. The scientific tools and methods discussed provide graduate students with the necessary skills to understand the structure of matter under extreme conditions of high densities, temperatures, and strong fields in the collapse of massive stars or a few microseconds after the big bang. In addition to the theory, the set of lectures presents hands-on material that includes an introduction to simulation programs for heavy-ion collisions, equations of state, and transport properties.
The purpose of this book is to illustrate some of the most important techniques which are helpful in combinatorial problems when computing quantum effects in covariant theories, like general relativity. In fact, most of the techniques find application also in broader contexts, such as low energy effective (chiral) Lagrangians or even in specific problems in condensed matter. Some of the topics covered are: the background field approach and the heat kernel ideas. The arguments are explained in some detail and the presentation is meant for young researchers and advanced students who are starting working in the field. As prerequisite the reader should have attended a course in quantum field theory including Feynman's path integral. In the Appendix a nontrivial calculation of one-loop divergences in Einstein-Hilbert gravity is explained step-by-step.
Questo testo, che giunge ora alla quarta edizione, e stato concepito principalmente per le necessita delle Scuole di Ingegneria, dove la Meccanica Razionale ha il duplice ruolo di introdurre sia alla modellizzazione fisico-matematica rigorosa che a specifiche applicazioni sviluppate poi in altri insegnamenti. La trattazione che qui proponiamo vuole presentare i concetti fondamentali mantenendo sempre l'attenzione rivolta alle applicazioni, a volte comuni ad altre discipline, in vista di sinergie didattiche favorite dalla presenza di corsi integrati. Abbiamo cercato di dare al libro una impostazione il piu possibile coerente con questa finalita, soprattutto in alcune sezioni tradizionalmente caratterizzate da una trattazione piu astratta: dai vincoli al Principio dei lavori virtuali, dal Principio di d'Alembert alla Meccanica Analitica.Abbiamo comunque mantenuto la tradizionale e, a nostro parere, irrinunciabile struttura ipotetico-deduttiva nello svolgimento delle argomentazioni, che fa ancora della Meccanica Razionale un disciplina formalmente rigorosa. Sono percio presenti dimostrazioni anche complesse, sia pure sempre motivate alla luce del contesto applicativo nel quale si vanno a collocare.Questa edizione e frutto di un ampio lavoro di riorganizzazione e rielaborazione rispetto alla precedente e contiene, oltre a numerosi nuovi esempi, miglioramenti nella presentazione dei concetti principali e nello svolgimento delle dimostrazioni, per renderle didatticamente piu efficaci.
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.
This book provides ideas for implementing Wolfram Mathematica to solve linear integral equations. The book introduces necessary theoretical information about exact and numerical methods of solving integral equations. Every method is supplied with a large number of detailed solutions in Wolfram Mathematica. In addition, the book includes tasks for individual study.This book is a supplement for students studying "e;Integral Equations"e;. In addition, the structure of the book with individual assignments allows to use it as a base for various courses.
This book highlights the fundamental physics of orbit theory, dynamical models, methods of orbit determination, design, measurement, adjustment, and complete calculations for the position, tracking, and prediction of satellites and deep spacecraft. It emphasizes specific methods, related mathematical calculations, and worked examples and exercises. Therefore, technicians and engineers in the aerospace industry can directly apply them to their practical work. Dedicated to undergraduate students and graduate students, researchers, and professionals in astronomy, physics, space science, and related aerospace industries, the book is an integrated work based on the accumulated knowledge in satellite orbit dynamics and the author¿s more than five decades of personal research and teaching experience in astronomy and aerospace dynamics.
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces of chiral conformal blocks, which arise from the homomorphism functors in the category, but also act on the spaces that arise from the corresponding derived functors. It is natural to ask whether this is indeed the case. The book carefully approaches this question by first providing a detailed introduction to surfaces and their mapping class groups. Thereafter, it explains how representations of these groups are constructed in topological field theory, using an approach via nets and ribbon graphs. These tools are then used to show that the mapping class groups indeed act on the so-called derived block spaces. Toward the end, the book explains the relation to Hochschild cohomology of Hopf algebras and the modular group.
"A Mathematical Approach to Special Relativity introduces the mathematical formalisms of special and general relativity. Developed from the author's experience teaching physics to students across all levels, the valuable resource introduces key concepts, building in complexity and using increasingly advanced mathematical tools as it progresses. Without assuming a background in calculus, the text begins with symmetry, before delving more deeply into Galilean relativity. Throughout, the book provides examples and useful 'Guides to the Literature.' This unique text emphasizes the experimental consequences and verifications of the underpinning theory in order to provide students with a solid foundation in this key area."
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.