Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book explores the philosophy and the foundations of quantum chemistry. It features chapters written by experts in the field. The contributions analyze quantum chemistry as a discipline, in particular, its relation with both chemistry and physics from the viewpoint of realism and reduction. Coverage includes such topics as quantum chemistry as an "e;in-between"e; discipline, molecular structure and quantum mechanics, quantum chemical models, and atoms and molecules in quantum chemistry.The interest of this book is twofold. First, the contributions aim to update and refresh the discussions regarding the foundations of quantum chemistry. Second, they seek to develop new philosophical perspectives that this discipline can suggest to philosophers of science.From its origins, quantum chemistry filled a problematic position in the disciplinary space. On the one hand, it is a branch of theoretical chemistry. On the other hand, it appeals essentially to theoretical tools coming from physics. This peculiar position triggered conceptual questions about its own identity. Inside this book, readers will find updated discussions on the foundations and the philosophy of this complex discipline.
The first book in the newly created book series, Computer-Aided Drug Discovery and Design, focuses on the computational aspects of early drug discovery, drug target identification, and validation. It revises current classical paradigms in target and phenotypic-based drug design with still ingrained approximations and concepts and discusses the research in the new network approach concept that include kinetic selectivity and metabolic analysis.Many often-overlooked approximations and concepts in drug discovery are fully covered. Drug Target Selection and Validation includes both introductory sections and research-based sections to be of use to both students and research scientists in drug discovery, design, kinetics and metabolic analysis. Pharmaceutical scientists, pharmaceutics, drug developers, pharmacologists, biomedical researchers in computer science, medicinal chemists, and precision medicine developers benefit from the information provided. The book concludes with a chapter on chemical and structural databases.
This book describes a unique combination of quantum chemical methods for calculating the basic physical properties of luminescent materials, or phosphors. These solid inorganic materials containing an optically active dopant are key players in several major fields of societal interest, including energy-efficient lighting, solar cells, and medical imaging. The novel ab initio methods described in this book are especially designed to target the crowded and complex electronic excited states of lanthanide activators in inorganic solids. The book is well suited to both new and experienced researchers alike and appeals to a broad range of theoretical and experimental backgrounds. The material presented enables an adept understanding of elaborate calculations, which, in tandem with experiments, give essential insight into difficult luminescence problems and quandaries, thus fully preparing the reader for an educated search for new functional luminescent materials
This book introduces basic concepts of mathematical physics to chemists. Many textbooks and monographs of mathematical physics may appear daunting to them. Unlike other, related books, however, this one contains a practical selection of material, particularly for graduate and undergraduate students majoring in chemistry. The book first describes quantum mechanics and electromagnetism, with the relation between the two being emphasized. Although quantum mechanics covers a broad field in modern physics, the author focuses on a hydrogen(like) atom and a harmonic oscillator with regard to the operator method. This approach helps chemists understand the basic concepts of quantum mechanics aided by their intuitive understanding without abstract argument, as chemists tend to think of natural phenomena and other factors intuitively rather than only logically. The study of light propagation, reflection, and transmission in dielectric media is of fundamental importance. This book explains these processes on the basis of Maxwell equations. The latter half of the volume deals with mathematical physics in terms of vectors and their transformation in a vector space. Finally, as an example of chemical applications, quantum chemical treatment of methane is introduced, including a basic but essential explanation of Green functions and group theory. Methodology developed by the author will also prove to be useful to physicists.
This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron-ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity.Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between the photoelectron and the molecular ion to describe the ion's dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
This book covers the design and development of glucocorticoid receptor modulators (GRM) from cortisol to antibody-drug conjugate payloads over the last 70 years. The author starts with an introduction to the background of glucocorticoid receptor modulators as potential therapeutic modalities. This is followed by seven chapters in which he collates and discusses the medicinal chemistry journey of GRMs, reviewing topics such as cortisol-based glucocorticoids, the different approaches that have been pursued to enable chronic dosing of GRM compounds by inactivation in plasma and the liver, the application of prodrugs to GRMs, selective GRMs, targeted delivery of GRMs using polymers and nanoparticles, and rational drug design approaches applied in the development of GRMs. Particular attention is given to the development of glucocorticoid receptor modulators as immunology antibody-drug conjugate payloads. In the book¿s final chapter, the author critiques the medicinal chemistry progress madesince the discovery of cortisone and the promise of the latest antibody-drug conjugates that release a GRM payload. In this book, readers will also find an overview of the X-ray structures of glucocorticoid receptor antagonists and a list of all the earlier reviews that cover part of the medicinal chemistry story of GRM collated by keywords organized in a table. With several examples of crystal structures and molecular modeling, this book illustrates the huge effort by multiple companies and research groups to develop glucocorticoid receptor modulators. Professionals and scholars alike will find it a handy tool, and appreciate the latest research findings that it presents.
This highly interdisciplinary book, covering more than six fields, from philosophy and sciences all the way up to the humanities and with contributions from eminent authors, addresses the interplay between content and context, reductionism and holism and their meeting point: the notion of emergence. Much of today's science is reductionist (bottom-up); in other words, behaviour on one level is explained by reducing it to components on a lower level. Chemistry is reduced to atoms, ecosystems are explained in terms of DNA and proteins, etc. This approach fails quickly since we can't cannot extrapolate to the properties of atoms solely from Schrodinger's equation, nor figure out protein folding from an amino acid sequence or obtain the phenotype of an organism from its genotype. An alternative approach to this is holism (top-down). Consider an ecosystem or an organism as a whole: seek patterns on the same scale. Model a galaxy not as 400 billion-point masses (stars) but as an object in its own right with its own properties (spiral, elliptic). Or a hurricane as a structured form of moist air and water vapour. Reductionism is largely about content, whereas holistic models are more attuned to context. Reductionism (content) and holism (context) are not opposing philosophies - in fact, they work best in tandem. Join us on a journey to understand the multifaceted dialectic concerning this duo and how they shape the foundations of sciences and humanities, our thoughts and, the very nature of reality itself.
This textbook is written to thoroughly cover the topic of introductory chemistry in detail¿with specific references to examples of topics in common or everyday life. It provides a major overview of topics typically found in first-year chemistry courses in the USA. The textbook is written in a conversational question-based format with a well-defined problem solving strategy and presented in a way to encourage readers to ¿think like a chemist¿ and to ¿think outside of the box.¿ Numerous examples are presented in every chapter to aid students and provide helpful self-learning tools. The topics are arranged throughout the textbook in a "traditional approach" to the subject with the primary audience being undergraduate students and advanced high school students of chemistry.
This monograph is a fundamental reference for scientists and engineers who encounter spin processes in their work. The author, Ilya Kuprov, derives the concept of spin from basic symmetries and gives an overview of theoretical and computational aspects of spin dynamics: from Dirac equation and spin Hamiltonian, through coherent evolution and relaxation theories, to quantum optimal control, and all the way to practical implementation advice for parallel computers.
This book compiles detailed results of electronic structure calculations for most possible cubic monohydrides, dihydrides and selected trihydrides related to superconductivity, comprising elements with atomic numbers up to 103. Beginning with an introduction to the theory and details of the computational methods implemented, this handbook presents a collection of chapters containing results for different classes of cubic hydrides, featuring tables of three-centre and two-centre tight-binding parameterizations, diagrams of energy bands, and densities of states with angular momentum decomposition. Equilibrium lattice parameters and bulk moduli are also included, along with the electron-ion matrix element (Hopfield-McMillan parameter), Stoner criterion for ferromagnetism and values of Fermi velocities and plasmon energies. Each chapter features a brief text explaining the results presented with comparison to experimental values when available. A selection of the implemented computer codes is reproduced for the reader¿s own use. This handbook is an ideal complement to any standard electronic structure text for students and researchers in materials science, condensed matter physics, and quantum chemistry.
This graduate textbook provides comprehensive information on topological analysis in real space of the electronic structure. Application of the topological tools is becoming routine for understanding the outcome of quantum chemical calculations. This title thoroughly reviews a selection of currently available topological tools, their use and spectrum of applications and provides graduate students and researchers with information not easily obtained from the available textbooks. The book is accompanied by worked examples, exercises and solutions and is a great tool for any quantum chemistry or computational chemistry course at the graduate and advanced undergraduate levels.
This book focuses on chemical reactions and processing under extreme conditions-how materials react with highly concentrated active species and/or in a very confined high-temperature and high-pressure volume. Those ultimate reaction environments created by a focused laser beam, discharges, ion bombardments, or microwaves provide characteristic nano- and submicron-sized products and functional nanostructures. The book explores the chemistry and processing of metals and non-metals as well as molecules that are strongly dependent on the energy deposition processes and character of the materials. Descriptions of a wide range of topics are given from the perspective of a variety of research methodologies, material preparations, and applications. The reader is led to consider and review how a high-energy source interacts with materials, and what the key factors are that determine the quality and quantity of nanoproducts and nano-processing.
This textbook provides a simple approach to understand the various complex aspects of stereochemistry. It deals with basic static stereochemistry and gives an overview of the different isomeric forms and nomenclatures. With simple writing style and many examples, this book covers the topics such as stereochemistry of hydrocarbons, alkenes, cycloalkenes, optically active compounds, trivalent carbon, fused, bridged and caged rings and related compounds. This textbook also covers the additional topics such as optical rotatory dispersion and circular dichroism, steroechemistry of elimination reactions, substitution reactions, rearrangement reactions and pericyclic reactions. The book includes pedagogical features like end-of-chapter problems and key concepts to help students in self-learning. The textbook is extremely useful for the senior undergraduate and postgraduate students pursuing course in chemistry, especially organic chemistry. Besides, this book will also be a useful reference book for professionals working in various chemical industries, biotechnology, bioscience and pharmacy.
This book proposes a completely unique reaction kinetics theory based on the uncertainty principle of quantum mechanics; the physical viewpoint and mathematical details for the theory construction are explained, and abundant applications of the theory mainly in materials science are described. The theory argues that physical systems on reaction are in a quantum-mechanically uncertain state, and that such systems will transition to new states after a finite duration time. Based on this theory, if the magnitude of the energy uncertainty, i.e., energy fluctuation of the system on reaction can be determined, we can calculate the reaction rates not only for the thermal activation processes but also for the non-thermal activation process such as mechanical, optical, electromagnetic, or other actions. Therefore, researchers or engineers who are involved in fields such as the discovery of new chemical substances, development of materials, innovation of manufacturing processes, andalso everyone purely interested in kinetic methodology find this book very stimulating and motivating.
This book synthesizes the underlying theory of statistical mechanics with the computational techniques and algorithms used to solve real-world problems and provide readers with a solid foundation in topics that reflect the modern landscape of statistical mechanics.
This book presents contributions on a wide range of computational research applied to fields ranging from molecular systems to bulk structures. This volume highlights current trends in modern computational chemistry and discusses the development of theoretical methodologies, state-of-the-art computational algorithms and their practical applications. This volume is part of a continuous effort by the editors to document recent advances by prominent researchers in the area of computational chemistry. Most of the chapters are contributed by invited speakers and participants to International annual conference "e;Current Trends in Computational Chemistry"e;, organized by Jerzy Leszczynski, one of the editors of the current volume. This conference series has become an exciting platform for eminent theoretical and computational chemists to discuss their recent findings and is regularly honored by the presence of Nobel laureates. Topics covered in the book include reactive force-field methodologies, coarse-grained modeling, DNA damage radiosensitizers, modeling and simulation of surfaces and interfaces, non-covalent interactions, and many others. The book is intended for theoretical and computational chemists, physical chemists, material scientists and those who are eager to apply computational chemistry methods to problems of chemical and physical importance. It is a valuable resource for undergraduate, graduate and PhD students as well as for established researchers.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.