Udsalget slutter om
Udvidet returret til d. 31. januar 2025

Matematik for ingeniører

Her finder du spændende bøger om Matematik for ingeniører. Nedenfor er et flot udvalg af over 675 bøger om emnet.
Vis mere
Filter
Filter
Sorter efterSorter Populære
  • af José Machado
    2.423,95 kr.

    This book covers a variety of topics in the field of mechanical engineering, with a special focus on methods and technologies for modeling, simulation, and design of mechanical systems. Based on a set of papers presented at the 2nd International Conference "e;Innovation in Engineering"e;, ICIE, held in Minho, Portugal, on June 28-30, 2022, it focuses on innovation in mechanical engineering, spanning from advanced materials and composites, optimization of  manufacturing and production processes, and converging issues and technologies in additive manufacturing and industry 4.0. It covers applications in the transport and automotive, and medical and education sector, among others. This book, which belongs to a three-volume set, provides engineering researchers and professionals with extensive and timely information on new technologies and developments in the field of mechanical engineering and materials.       

  • af Alexander E. Hramov, Alexey A. Koronovskii, Valeri A. Makarov, mfl.
    1.996,95 kr.

  • af Vladik Kreinovich & Nguyen Hoang Phuong
    1.320,95 kr.

  • af Dan Braha, Yaneer Bar-yam, Carlos Gershenson, mfl.
    1.213,95 kr.

  • af Georg Schlüchtermann
    321,95 kr.

    Wie in Band 1 zur Ingenieurmathematik wird auch in diesem Band der Wert auf eine Konzentration auf ein bestimmtes Gebiet der Ingenieurmathematik gelegt. Damit versuchen wir insbesondere den Studierenden durch uberschaubare Inhalte nicht zu uberfordern. Mit dem ersten Teil zur linearen Algebra sollen die Grundlagen fur das weitere Verstandnis in den Anwendungsfachern gelegt werden. Mit Beispielen aus der Ingenieur- und Naturwissenschaften werde die Bezuge zur Anwendung aufgezeigt. Der behandelte Stoff wird mit Beispielrechnungen vertieft. Jedes Kapitel enthalt verschiedene Ubungen zur Einarbeitung. Dabei sind diese einerseits als Kurzaufgaben zum Verstandnis gestaltet und andererseits auch in klassischen Ubungsaufgaben gestellt, eingeteilt nach Schwierigkeitsgrad. Losungen zu den Ubungsaufgaben sind als Video abrufbar und dieser Band wird durch drei Probeklausuren zum Selbsttest abgerundet.

  • af John B Thomas
    572,95 kr.

    This book was written for an introductory one-term course in probability. It is intended to provide the minimum background in probability that is necessary for students interested in applications to engineering and the sciences. Although it is aimed primarily at upperclassmen and beginning graduate students, the only prere­ quisite is the standard calculus course usually required of under­ graduates in engineering and science. Most beginning students will have some intuitive notions of the meaning of probability based on experiences involving, for example, games of chance. This book develops from these notions a set of precise and ordered concepts comprising the elementary theory of probability. An attempt has been made to state theorems carefully, but the level of the proofs varies greatly from formal arguments to appeals to intuition. The book is in no way intended as a substi­ tu te for a rigorous mathematical treatment of probability. How­ ever, some small amount of the language of formal mathematics is used, so that the student may become better prepared (at least psychologically) either for more formal courses or for study of the literature. Numerous examples are provided throughout the book. Many of these are of an elementary nature and are intended merely to illustrate textual material. A reasonable number of problems of varying difficulty are provided. Instructors who adopt the text for classroom use may obtain a Solutions Manual for all of the problems by writing to the author.

  • af Helmut Ulrich
    436,95 kr.

    Dieses Buch ist eine leicht verstandliche Einfuhrung in die Theorie und praktische Handhabung der Laplace-, Fourier- und z-Transformation, die in vielen Fachgebieten wie der Elektrotechnik , Informations- und Kommunikationstechnik, Mechatronik, Regelungstechnik etc. eine wichtige Rolle spielen. Zahlreiche Beispiele und Anwendungen zeigen den richtigen Umgang mit den Transformationen. Die Erlauterungen werden vielfach durch graphische Darstellungen veranschaulicht. Das Ziel des Buches ist es, eigene Problemstellungen mit den gezeigten Methoden erfolgreich angehen zu konnen. Die didaktische Aufbereitung des Lehrstoffes im Buch sichert einen nachhaltigen Lernerfolg .

  • af Nita H. Shah
    1.943,95 kr.

    This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.

  • af Yi Zhang & Alexey Piunovskiy
    2.202,95 kr.

  • af Dominique Jeulin
    2.238,95 kr.

  • af Octavian Iordache
    1.106,95 kr.

  • af Daniel J. Arrigo
    593,95 kr.

    This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter.The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.

  • af Eduardo Garcia-Rio
    405,95 kr.

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kahler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kahler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kahler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.

  • af Daniel Ashlock
    412,95 kr.

    This book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. It introduces the derivative using the limit-based definition and covers the standard function library and the product, quotient, and chain rules. It explores the applications of the derivative to curve sketching and optimization and concludes with the formal definition of the limit, the squeeze theorem, and the mean value theorem.

  • af Andrew McEachern
    570,95 kr.

    A problem factory consists of a traditional mathematical analysis of a type of problem that describes many, ideally all, ways that the problems of that type can be cast in a fashion that allows teachers or parents to generate problems for enrichment exercises, tests, and classwork. Some problem factories are easier than others for a teacher or parent to apply, so we also include banks of example problems for users. This text goes through the definition of a problem factory in detail and works through many examples of problem factories. It gives banks of questions generated using each of the examples of problem factories, both the easy ones and the hard ones. This text looks at sequence extension problems (what number comes next?), basic analytic geometry, problems on whole numbers, diagrammatic representations of systems of equations, domino tiling puzzles, and puzzles based on combinatorial graphs. The final chapter previews other possible problem factories.

  • af Peter Gilkey
    403,95 kr.

    Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Khler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincar duality, and the Knneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups and the Peter--Weyl Theorem are treated. In Chapter 7, material concerning homogeneous spaces and symmetric spaces is presented. Book II concludes in Chapter 8 where the relationship between simplicial cohomology, singular cohomology, sheaf cohomology, and de Rham cohomology is established. We have given some different proofs than those that are classically given and there is some new material in these volumes. For example, the treatment of the total curvature and length of curves given by a single ODE is new as is the discussion of the total Gaussian curvature of a surface defined by a pair of ODEs.

  • af Esteban Calviño-Louzao
    528,95 kr.

    Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group is Abelian and the ,,,,,,,, + ,,,, group\index{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type ,,,, surfaces. These are the left-invariant affine geometries on . Associating to each Type ,,,, surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue ,,,,=-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type ,,,, surfaces; these are the left-invariant affine geometries on the ,,,,,,,, + ,,,, group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere ,,,,2. The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.

  • af Colin Lee
    724,95 kr.

    This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on ZermelöFraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.

  • af Mustapha Akinkunmi
    528,95 kr.

    Introduction to Statistics Using R is organized into 13 major chapters. Each chapter is broken down into many digestible subsections in order to explore the objectives of the book. There are many real-life practical examples in this book and each of the examples is written in R codes to acquaint the readers with some statistical methods while simultaneously learning R scripts.

  • af Eduardo Garcia-Rio, Miguel Brozos-Vázquez, Peter Gilkey, mfl.
    405,95 kr.

    This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds

  • af Bouchra Aylaj
    397,95 kr.

    The contents of this brief Lecture Note are devoted to modeling, simulations, and applications with the aim of proposing a unified multiscale approach accounting for the physics and the psychology of people in crowds. The modeling approach is based on the mathematical theory of active particles, with the goal of contributing to safety problems of interest for the well-being of our society, for instance, by supporting crisis management in critical situations such as sudden evacuation dynamics induced through complex venues by incidents.

  • af Peter M. Luthy, Guido L. Weiss & Steven S. Xiao
    397,95 kr.

    This book assumes the students know some of the basic facts about Calculus. We are very rigorous and expose them to the proofs and the ideas which produce them. In three chapters, this book covers these number systems and the material usually found in a junior-senior advanced Calculus course. It is designed to be a one-semester course for "talented" freshmen. Moreover, it presents a way of thinking about mathematics that will make it much easier to learn more of this subject and be a good preparation for more of the undergraduate curriculum.

  • af Manpreet Singh Katari
    249,95 kr.

    Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.

  • af Steven Weintraub
    258,95 - 398,95 kr.

  • af Dennis Shasha
    619,95 kr.

    Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to the data (typically, the normal distribution) and derive results under that assumption. Unfortunately, in real life, one cannot normally be sure of the underlying distribution. For that reason, this book presents a distribution-independent approach to statistics based on a simple computational counting idea called resampling. This book explains the basic concepts of resampling, then system atically presents the standard statistical measures along with programs (in the language Python) to calculate them using resampling, and finally illustrates the use of the measures and programs in a case study. The text uses junior high school algebra and many examples to explain the concepts. Th e ideal reader has mastered at least elementary mathematics, likes to think procedurally, and is comfortable with computers. Table of Contents: The Basic Idea / Pragmatic Considerations when Using Resampling / Terminology / The Essential Stats / Case Study: New Mexico's 2004 Presidential Ballots / References / Bias Corrected Confidence Intervals / Appendix B

  • af E. N. Barron & J. G. Del Greco
    676,95 kr.

    One of the most important subjects for all engineers and scientists is probability and statistics. This book presents the basics of the essential topics in probability and statistics from a rigorous standpoint. The basics of probability underlying all statistics is presented first and then we cover the essential topics in statistics, confidence intervals, hypothesis testing, and linear regression. This book is suitable for any engineer or scientist who is comfortable with calculus and is meant to be covered in a one-semester format.

  • af Snehashish Chakraverty
    528,95 kr.

    Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain static and dynamic problems turn into interval and/or fuzzy linear/nonlinear systems of equations and eigenvalue problems, respectively. Accordingly, this book includes newly developed efficient methods to handle the said problems based on the affine and interval/fuzzy approach. Various illustrative examples concerning static and dynamic problems of structures have been investigated in order to show the reliability and efficacy of the developed approaches.

  • af Sujaul Chowdhury
    615,95 kr.

    This book is intended for undergraduate students of Mathematics, Statistics, and Physics who know nothing about Monte Carlo Methods but wish to know how they work. All treatments have been done as much manually as is practicable. The treatments are deliberately manual to let the readers get the real feel of how Monte Carlo Methods work. Definite integrals of a total of five functions ,,,,(,,,,), namely Sin(,,,,), Cos(,,,,), e,,,,, loge(,,,,), and 1/(1+,,,,2), have been evaluated using constant, linear, Gaussian, and exponential probability density functions ,,,,(,,,,). It is shown that results agree with known exact values better if ,,,,(,,,,) is proportional to ,,,,(,,,,). Deviation from the proportionality results in worse agreement. This book is on Monte Carlo Methods which are numerical methods for Computational Physics. These are parts of a syllabus for undergraduate students of Mathematics and Physics for the course titled "e;Computational Physics."e;Need for the book: Besides the three referenced books, this is the only book that teaches how basic Monte Carlo methods work. This book is much more explicit and easier to follow than the three referenced books. The two chapters on the Variational Quantum Monte Carlo method are additional contributions of the book. Pedagogical features: After a thorough acquaintance with background knowledge in Chapter 1, five thoroughly worked out examples on how to carry out Monte Carlo integration is included in Chapter 2. Moreover, the book contains two chapters on the Variational Quantum Monte Carlo method applied to a simple harmonic oscillator and a hydrogen atom. The book is a good read; it is intended to make readers adept at using the method. The book is intended to aid in hands-on learning of the Monte Carlo methods.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.