Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The book systematically accounts for the scientific and technological problems of nanostructured silicon in the form of porous and black silicon. Nanostructured silicon is currently a pioneer research topic worldwide due to its enormous potential applications for modern electronic devices, such as sensitive photodetectors, solar cells, biochemical sensors, hydrogen generators, and display devices. The main structural modifications of this nanomaterial are porous and black silicon. Porous silicon addresses crystalline silicon with nanopores and black silicon with nanoneedles. Historically, porous silicon is thought to be a kind of precursor to black silicon. The formation, research, and application of nanostructured silicon remains the main cornerstone of nanotechnologies, and this book is useful for a wide range of researchers in the fields of semiconductor physics, micro-, and nanoelectronics. The author outlines the prospect of black silicon fabrication and its various applications. As for porous silicon, the book contains a detailed analysis of this material as a precursor of black silicon. This allows it to be possible to carry out correlations between two structural modifications of nanostructured silicon to clearly and reasonably show their advantages and disadvantages. With many references to a vast resource of recently published literature, this book serves as an important and insightful source of valuable information and provides scientists and engineers with new ideas to better understand the formation processes of nanostructured silicon as well as improve and expand their properties.
This book discusses the applications of nanotechnology in clinical microbiology, food microbiology, and green solutions of nanoparticles using microorganisms for a range of benefits. It describes nanotechnology¿s rapid progress in the development of materials used in industry, medicine, drug delivery, and dentistry. The authors further explore how microbiology and nanotechnology separately have proven to be effective for human health solutions keeping an ecological and environmental balance. Domains covered include environmental microbiology, medical microbiology, food microbiology (to control food spoilage), biosynthesis of nanomaterials using microorganisms, water microbiology, nanofluidic devices for isolation and analysis of individual biomolecules such as DNA that can lead to a new detection scheme for cancer, and various fields such as pharmacy, clinical research, agriculture etc. This book will be essential reading to a wide range of scholars and researchers interestedin microbiology along with nanotechnology applications for efficient solutions to cancer detection, biosensors, vaccines research, agriculture, wastewater management etc.
This book presents 60 selected peer-reviewed contributions from the international conference Physics and Mechanics of New Materials and Their Applications, PHENMA 2023 (3-8 October, 2023, Surabaya, Indonesia), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in energy harvesting and piezoelectric materials optimization, electromagnetoelastic actuators for nanotechnology research, impedance spectroscopy and study of ceramic materials, catalyst synthesis and control of morphological characteristics, synthesis and study of electrocatalysts for fuel cells. The presented results are important forongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to the analysis of technogenic raw materials and different material applications in science, technique and industry.
This book covers various subtopics of catalyst research. It provides essential background material on key concepts in catalyst technologies, along with recent developments in synthesis methods. The book delves into diverse areas such as photocatalysis, electrocatalysis, biocatalysis, and heterogeneous catalysis, offering a detailed exploration of their respective advancements, advantages, disadvantages, and applications in different catalytic reactions. It also presents fundamental ideas and overviews of noble-metal-free bifunctional electrocatalysts for overall water splitting in alkaline medium, catalytic nitrite reduction, and the utilization of catalysts supported on various materials like CeO2, Nb2O5, ZrO2, TiO2, ¿-Al2O3, SiO2, and ZSM-5 for the removal of high concentrations of nitrite in water. Moreover, the book provides insights into topics such as polyphenol oxidase mimics as catalysts, ferrites nanoparticles/graphene oxide nanoparticles and their composites as enzyme mimics and photocatalysts, electrochemical approaches with basic concepts and materials for hydrogen technologies, as well as recent advances and applications of modified-semiconductor photocatalysts in pollutant degradation. For scientists and researchers, the book offers a wealth of recent experimental and computational results, along with in-depth discussions. Some of the specific areas covered include sphalerite ZnS nanoparticles (NPs) synthesized via solvothermal method, incorporating various ruthenium (Ru) concentrations. Additionally, the book explores the modification of TiO2 as SO4/TiO2 acid and CaO/TiO2 base catalysts, and their applications in converting waste frying oil into biodiesel.
This book highlights the photogalvanic effects at low dimensions, surfaces, and interfaces, more specifically 2D materials, such as graphene and monolayer transition metal dichalcogenides. Although the phenomenology of the photogalvanic effects, which can be simply seen as photoresponse nonlinear-in-electric field, have been well-established, the microscopic understanding in each material system may vary. This book is a quick reference and a detailed roadmap starting from phenomenology and continuing with the ultimate low dimensional materials, in which the photogalvanic effects can offer a rich platform at the second-order response to an electric field. A general phenomenology of photogalvanic effect is provided in the first chapter, together with the photon drag effect which also generates a photocurrent like the photogalvanic effect, but with some distinct features, as well as somewhat puzzling similarities. Next two chapters explain these effects in graphene, starting with a necessary related background on graphene, then a particular focus on its specific phenomenology, microscopic theory, and experimental results. In a similar fashion, in chapters four and five, a necessary background for the photogalvanic effects in monolayer transition metal dichalcogenides, with symmetry analysis, microscopic theory, and experimental results is presented, along with the Berry curvature dependent photocurrent, which can also play an important role in 2D semiconductors. The second-order photogalvanic effects that have been covered so far in graphene and monolayer transition metal chalcogenides have already excited the 2D semiconductor optoelectronic research community by several means. It seems that the interests on the photogalvanic effects will continue to escalate in near future.
This book provides comprehensive coverage of the development of new pharmaceuticals and the enhancement of existing ones. It offers a comprehensive understanding of pharmaceutical biotechnology, including its underlying principles and practical applications from an industrial standpoint. While introducing the roles and applications of biotechnology in drug design and development, the book describes how developments in other fields, like genomics, proteomics, and high-throughput screening, have facilitated the discovery of novel therapeutic targets and drug development methods. It included concepts that are essential to biotechnology and apply to protein therapies.The book provides a thorough overview of the ways in which biotechnology influences drug development, production, and regulation, and is a valuable resource for those seeking to enhance their understanding in this area. This book is designed to support educators in their teaching efforts and offers a reader-friendly exploration of the various stages involved in developing new pharmaceuticals through biotechnology. This book is a valuable resource for individuals in various academic and professional careers, including undergraduates, graduates, pharmaceutical scientists, clinicians, and academic researchers. It provides convenient access to current practices in pharmaceutical biotechnology, making it particularly useful for those working in the interdisciplinary field of biochemistry, pharmacology, biopharmaceutics, and biotechnology. This book's concise and impartial content structure may also benefit corporate researchers.
This book provides new insight and a better understanding of nanotechnology in mitigating crop biotic stresses.It covers crop diseases and different nano-based management strategies used to manage pathogens and plant-parasitic nematodes damaging crops. Nanoparticles have the potential to revolutionize crop yield and can control plant biotic stress. Nanotechnology in plant pathology is a new frontier among various nanotechnological applications. Nanotechnology applications include the development of nano-based pesticides and nanoformulations of chemicals for crop improvement by reducing biotic stress. Different nanomaterials like ZnONPs, SiO2NPs, CuONPs, AgNPs, and TiO2NPs have been examined for their impacts on plant growth and biotic stress management. This book deals with the advanced use of nanotechnology in managing the biotic stress of crops and improving crop production. It covers these issues and many more. Each chapter focus on one particular topic. Incorporate chapters provide detailed information on nanotechnology and may help in future research. This book will be useful for researchers, professors, and postgraduate and undergraduate students, especially concerning agriculture and plant pathology.
This book comprehensively covers various aspects of biobased nanomaterials, including their types, fabrication methods, characterization techniques, and applications in different fields. The book starts with an introduction to biobased nanomaterials, highlighting their significance in various fields due to their unique properties. The first few chapters cover the different types of biobased nanomaterials, their properties, and how they are extracted from various natural sources. The methods of fabrication of biobased nanomaterials are discussed in detail, including the techniques for controlling their size, shape, and composition. It then delves into the characterization of biobased nanomaterials, discussing the different techniques used to determine their properties, including their morphology, size, structure, and composition. The subsequent chapters explore the various applications of biobased nanomaterials in different fields such as environmental applications, wound healing, tissue engineering, food industry, agriculture, sensing technology, biomedical applications, and energy storage devices. The advantages of biobased nanomaterials over traditional nanomaterials are highlighted, including their biodegradability and sustainability. The environmental concerns associated with biobased nanomaterials, as well as the health and safety concerns, are also discussed. The book concludes by looking at the prospects of biobased nanomaterials and how they can contribute to sustainable development. Overall, the book is an informative and comprehensive book that provides a thorough understanding of biobased nanomaterials and their various applications. It is a valuable resource for researchers, students, and professionals in various fields such as materials science, chemistry, biology, and environmental science. alike.
This volume provides comprehensive dry and wet experiments, methods, and applications on nanopore sequencing. Chapters guide readers through bioinformatic procedures, genome sequencing, analysis of repetitive regions, structural variations, rapid and on-site microbial identification, epidemiology, and transcriptome analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Nanopore Sequencing: Methods and Protocols aims to be comprehensive guide for researchers.
¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿ ¿¿¿¿¿¿¿¿. ¿¿¿¿¿¿¿¿¿, ¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿. ¿¿¿¿¿¿¿¿¿¿¿, ¿¿¿¿¿¿ ¿¿ ¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿ ¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿ ¿¿¿¿¿¿¿¿.¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿ ¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿. ¿¿¿¿¿¿¿¿ ¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿:¿ ¿¿¿¿¿¿ ¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿: ¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿ ¿¿¿¿¿¿ ¿¿¿¿ ¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ¿¿¿ ¿¿¿¿¿¿¿ ¿¿¿¿¿¿¿¿¿¿. Global Water Scarcity: Challenges and Consequences Introduction Water is an essential resource for life. Humans, animals, and plants all depend on water for their survival. However, water scarcity is becoming a major problem in many parts of the world. Causes of Water Scarcity There are many causes of water scarcity. Some of the most common causes include: Population growth: The increasing world population is a major driver of increasing water demand.Climate change: Climate change is causing more extreme weather events, such as droughts and floods, which can disrupt water supplies.Pollution: Water pollution can make water unsafe to drink or use for other purposes.Inefficient water use: Inefficient water use, such as leaks in pipes, can waste water.
This book gives a complete overview of current developments in the nano drug delivery technology in the management of neurological disorders and brain diseases. The book is divided into three main sub-sections: A) Fundamental study on nanomaterials, nanocarriers, and nanoformulation-based drug delivery in neurological diseases management, B) Nano drug delivery therapy - a novel approach towards common neurological disorders and C) Novel nano delivery strategies in targeted neurological diseases management. This collective work presents diverse nano-based drug delivery technologies that are high-throughput, reliable, pioneering, and applicable to researchers of different countries despite their socio-economic conditions. It hopefully encourages researchers, innovators and policymaker to adapt nanomaterial-based drug delivery vehicles technologies using diverse nano-based formulation techniques as targeted therapy for treating and managing neurological disorders.
This book offers new insights into the process of adjusting nanostructures in high-strength steels to achieve enhanced mechanical properties. It summarizes the state-of-the-art nanoengineering approaches, such as precipitation engineering, interface engineering, and short-range ordering engineering. The book explores the nanostructure-process-property relationships in various high-strength steels, including TRIP/TWIP/MBIP in high-Mn steels (HMnS), medium-Mn steels (MMnS), bearing steels, tool steels, and more. The author investigates a novel approach to control the phase transformation process during deformation and/or thermal treatment in steels, employing both experimental and theoretical tools.
This contributed volume provides a comprehensive understanding of synthetic protocols, characterization techniques, and current applications of iron oxide-based nanocomposite and nanoenzyme materials. It covers basic concepts and recent advancements in iron oxide-based nanocomposites and nanoenzymes, focusing on their synthesis, characterization, and functionalization for specific research applications. The different chapters in the book highlight key characterization techniques including Fourier Transform Infrared Spectroscopy, X-ray diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy, among others while it also explores various applications of these materials, such as adsorption of heavy metals and dyes, gas sensors, biomedical applications, photo-catalysis, and photovoltaic sensors. This book serves as a valuable resource for researchers and graduate students working in the fields of materials science, chemistry, physics, and biotechnology.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 10th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2022), which was held in hybrid format on August 25-27, 2022 at Lviv House of Scientists, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, synthesis and their applications.The book will be interesting for leading scientists, advanced undergraduate and graduate students in material and nanoscience. This book¿s companion volume also addresses topics such as nano-optics, nanoelectronics,energy storage, nanochemistryl and biomedical applications.
Inside you will learn the important lessons you need to master the basics of ethical hacking. No matter if you are a beginner or a knowledgeable it professional; this book will enhance your skills and make you the best ethical hacker you can be. When it comes to honing your talents and seeking certification, this book provides you with the information you need to take the next step. This book covers everything you need to get started and move forward with ethical hackingThis book will prepare you to reach your goals in ethical hacking and will teach you the complex information behind packets, protocols, malware, and network infrastructure. You'll learn from this security book:The type of hackersHow the process of hacking works and how attackers cover their tracesHow to install and use kali linuxThe basics of cybersecurityAll the information on malware and cyber attacksHow to scan the servers and the networkWordpress security & hackingHow to do google hackingBy the time you finish this book, you will have strong knowledge of what a professional ethical hacker goes through. You will also be able to put these practices into action. Unlike other hacking books, the lessons start right from the beginning, covering the basics of hacking and building up from there. If you have been searching for reliable, legal and ethical information on how to become a hacker, then you are at the right place.
Bio-based materials, including those containing wood, will become increasingly important as we move to a bio-based economy. Among their many attributes, it is vitally important that these materials are renewable, sustainable with proper management and environmentally benign. Wood remains one of our most important bio-based materials. While it is an amazing material, wood still has negative attributes and drawbacks that can affect performance, including dimensional instability when wetted, vulnerability to fire and high temperatures, and susceptibility to biodeterioration. A variety of treatments have been developed to overcome these weaknesses. Among the most exciting of these treatments are nanomaterials. These materials have some exceptionally attractive properties for improving timber performance and have been the subject of intensive research over the past decade. There is a tremendous need for a single comprehensive source of information on this rapidly emerging subject with tremendous potential to enhance the performance of a variety of bio-based materials. This book contains 10 chapters, each compiled by different author(s) who are considered the top researcher(s) in their respective fields. The chapters begin with some basic background on nanomaterials and their synthesis, then explore different areas for potential applications and conclude with a review of the emerging questions about nanomaterial safety. The book is designed to provide the latest information and know-how on application and utilization of different nanomaterials to improve the properties of wood and wood-based composite panels. The contents cover some main topics in the industry including improving physical and mechanical properties, increasing resistance to biodegradation (including fungi and insects), developing wood-plastic composites (WPC), applying nanomaterials in paper and board industry, and emergence of transparent wood and radiation shielding. It also covers the use of nanomaterials to improve the performance of paints and finishes used for forest products. The book provides a single location for those interested in the field to begin.
This book provides an overview of pseudocapacitive materials, including their fundamentals, synthetic methods, architectural enhancements to boost their properties, and emerging materials. It covers numerous strategies to enhance their performance, such as altering morphology, doping, introducing multivalent ions, designing devices, and utilizing emerging pseudocapacitive materials. The book also delves into fundamental approaches for fine-tuning the properties of pseudocapacitive materials and explores their applications in energy storage devices, with a specific focus on emerging pseudocapacitive materials and their utilization in energy storage devices.
Hot Embossing: Theory of Microreplication, Second Edition presents the current state-of-the-art in microreplication, with a focus on hot embossing, nanoimprint, thermoforming, and roll-to-roll replication. Polymer processing, the theory of polymers and the processing of polymers are discussed in detail. The book contains in-depth analysis of processing processes and replication techniques, including mold fabrication. Monitoring, data analysis and reliability of molded parts is also discussed. In this updated edition, new processes are included, such as the process of micro- and nanothermoforming to generate 3D structures and the hot pulling processes to generate hierarchical structures with high aspect ratios. Based on hot pulling, "Nanofur? for Oil-water-separation is a large-scale biomimetic application. Upscaling, especially the seamless roll-to-roll replication, is also explored. The book is designed to cover the entire workflow for a seamless lithographic sleeve. This new edition marks a substantial update of the previous edition, incorporating several new chapters. It is an important resource for materials scientists and engineers working in the areas of micro- and nanofabrication.
This book covers the new field of straintronics, using strain switched nanomagnets for extremely energy-efficient computing, information processing, communication, and signal generation. Based on well-established CMOS technology, traditional electronics have two significant shortcomings: excessive energy dissipation and volatility, which is the inability to retain information after power has been switched off. Straintronics is more energy-efficient and non-volatile (but also more error-prone), allowing it to eclipse traditional electronics in niche areas that are increasingly attracting attention, such as image processing and probabilistic computing, computer vision, machine learning, neuromorphic networks, probabilistic computing, and belief networks. Magnetic Straintronics: An Energy-Efficient Hardware Paradigm for Digital and Analog Information Processing introduces straintronics and the technology's myriad applications for researchers, engineers, and scientists in electrical engineering, physics, and computer engineering.
About this bookThis book features a collection of reviews focusing on interrelated topics in nano-optics and nanophononics written by some of the world's leading scientists in these fields. The book discusses recent results of numerical investigations of light-matter interactions at the nanoscale using first-principles calculations. Additionally, it reviews selected topics in the areas of nanophotonic devices based on functional nanoparticles for energy harvesting and the development of photo materials for advanced applications in optics and nanotechnologies. Finally, the book reviews the experimental development of quantum-dot single-photon sources on integrated photonic circuits and looks at applications in quantum information processing and quantum information distribution based on color center in diamond.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.