Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learning using L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.
Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains. Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems.
AI Computing Systems: An Application Driven Perspective adopts the principle of "application-driven, full-stack penetration" and uses the specific intelligent application of "image style migration" to provide students with a sound starting place to learn. This approach enables readers to obtain a full view of the AI computing system. A complete intelligent computing system involves many aspects such as processing chip, system structure, programming environment, software, etc., making it a difficult topic to master in a short time.
This four-volume set LNCS 13701-13704 constitutes contributions of the associated events held at the 11th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2022, which took place in Rhodes, Greece, in October/November 2022. The contributions in the four-volume set are organized according to the following topical sections: specify this - bridging gaps between program specification paradigms; x-by-construction meets runtime verification; verification and validation of concurrent and distributed heterogeneous systems; programming - what is next: the role of documentation; automated software re-engineering; DIME day; rigorous engineering of collective adaptive systems; formal methods meet machine learning; digital twin engineering; digital thread in smart manufacturing; formal methods for distributed computing in future railway systems; industrial day.
This book constitutes revised selected papers from the refereed proceedings of the 11th International Conference on Computational Advances in Bio and Medical Sciences, ICCABS 2021, held as a virtual event during December 16-18, 2021.The 13 full papers included in this book were carefully reviewed and selected from 17 submissions. They were organized in topical sections as follows: Computational advances in bio and medical sciences; and computational advances in molecular epidemiology.
Reachable Sets of Dynamic Systems: Uncertainty, Sensitivity, and Complex Dynamics introduces differential inclusions, providing an overview as well as multiple examples of its interdisciplinary applications. The design of dynamic systems of any type is an important issue as is the influence of uncertainty in model parameters and model sensitivity. The possibility of calculating the reachable sets may be a powerful additional tool in such tasks. This book can help graduate students, researchers, and engineers working in the field of computer simulation and model building, in the calculation of reachable sets of dynamic models.
This volume presents a selection of peer-reviewed papers that address the latest developments in the methodology and applications of data analysis and classification tools to micro- and macroeconomic problems. The contributions were originally presented at the 30th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2021, held online in Poznan, Poland, September 8-10, 2021. Providing a balance between methodological and empirical studies, and covering a wide range of topics, the book is divided into five parts focusing on methods and applications in finance, economics, social issues and to COVID-19 data. The book is aimed at a wide audience, including researchers at universities and research institutions, PhD students, as well as practitioners, data scientists and employees in public statistical institutions.
The LNCS journal Transactions on Large-Scale Data and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability.This, the 51st issue of Transactions on Large-Scale Data and Knowledge-Centered Systems, contains five fully revised selected regular papers. Topics covered include data anonyomaly detection, schema generation, optimizing data coverage, and digital preservation with synthetic DNA.
Dieses Buch bietet einen Überblick über Data-Mining-Methoden, die durch Software veranschaulicht werden. Beim Wissensmanagement geht es um die Anwendung von menschlichem Wissen (Erkenntnistheorie) mit den technologischen Fortschritten unserer heutigen Gesellschaft (Computersysteme) und Big Data, sowohl bei der Datenerfassung als auch bei der Datenanalyse. Es gibt drei Arten von Analyseinstrumenten. Die deskriptive Analyse konzentriert sich auf Berichte über das, was passiert ist. Bei der prädiktiven Analyse werden statistische und/oder künstliche Intelligenz eingesetzt, um Vorhersagen treffen zu können. Dazu gehört auch die Modellierung von Klassifizierungen. Die diagnostische Analytik kann die Analyse von Sensoreingaben anwenden, um Kontrollsysteme automatisch zu steuern. Die präskriptive Analytik wendet quantitative Modelle an, um Systeme zu optimieren oder zumindest verbesserte Systeme zu identifizieren. Data Mining umfasst deskriptive und prädiktive Modellierung. Operations Research umfasst alle drei Bereiche. Dieses Buch konzentriert sich auf die deskriptive Analytik.Das Buch versucht, einfache Erklärungen und Demonstrationen einiger deskriptiver Werkzeuge zu liefern. Es bietet Beispiele für die Auswirkungen von Big Data und erweitert die Abdeckung von Assoziationsregeln und Clusteranalysen. Kapitel 1 gibt einen Überblick im Kontext des Wissensmanagements. Kapitel 2 erörtert einige grundlegende Softwareunterstützung für die Datenvisualisierung. Kapitel 3 befasst sich mit den Grundlagen der Warenkorbanalyse, und Kapitel 4 demonstriert die RFM-Modellierung, ein grundlegendes Marketing-Data-Mining-Tool. Kapitel 5 demonstriert das Assoziationsregel-Mining. Kapitel 6 befasst sich eingehender mit der Clusteranalyse. Kapitel 7 befasst sich mit der Link-Analyse. Die Modelle werden anhand geschäftsbezogener Daten demonstriert. Der Stil des Buches ist beschreibend und versucht zu erklären, wie die Methoden funktionieren, mit einigen Zitaten, aber ohne tiefgehende wissenschaftliche Referenzen. Die Datensätze und die Software wurden so ausgewählt, dass sie für jeden Leser, der über einen Computeranschluss verfügt, weithin verfügbar und zugänglich sind.
This book constitutes the proceedings of the 5th International Conference, ICC3 2021, held in Coimbatore, India, during December 16-18, 2021. The 14 full papers included in this book were carefully reviewed and selected from 84 submissions. They were organized in topical sections as follows: computational intelligence; cyber security; and computational models.
This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation. The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge.The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.
This book constitutes the refereed proceedings of the 23rd International Conference on Knowledge Engineering and Knowledge Management, EKAW 2022, held in Bolzano, Italy, in September 2022. The 11 full papers presented together with 5 short papers were carefully reviewed and selected from 57 submissions The previous event in the series, EKAW 2020, introduced a special theme related to "e;Ethical and Trustworthy Knowledge Engineering."e; This theme is still very relevant in 2022, and thus has remained one of the core topics of the conference.The conference concerned with all aspects about eliciting, acquiring, modeling and managing knowledge, and the construction of knowledge-intensive systems and services for the semantic web, knowledge management, e-business, natural language processing, intelligent information integration, and much more.
Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen, der verdorben zu sein scheint, nicht zu essen. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Mit der Entwicklung von Algorithmen und maschinellem Lernen wird zwar versucht, Voreingenommenheit zu beseitigen, aber schließlich werden sie doch von Menschen geschaffen und sind daher anfällig für das, was wir als algorithmische Voreingenommenheit bezeichnen.In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, verwalten und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Voreingenommenheit spiegelt diese menschlichen Tendenzen wider und hat ihren Ursprung in ihnen.Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt wird. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Ganz gleich, ob Sie eine erfahrene Führungskraft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind - jetzt ist ein entscheidender Zeitpunkt, um sich über die größeren soziologischen Auswirkungen von Verzerrungen im digitalen Zeitalter zu informieren.Dieses Buch stellt die Übersetzung einer englischsprachigen Originalausgabe dar. Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz erstellt (maschinelle Übersetzung mit DeepL.com). Eine anschließende manuelle Überarbeitung erfolgte vor allem nach inhaltlichen Gesichtspunkten, so dass das Buch stilistisch von einer herkömmlichen Übersetzung abweichen kann.
Künstliche Intelligenz berührt fast jeden Teil Ihres Alltags. Auch wenn Sie auf den ersten Blick annehmen, dass Technologien wie intelligente Lautsprecher und digitale Assistenten das Ausmaß dieser Technologie darstellen, hat sich KI in der Tat schnell zu einer Allzwecktechnologie entwickelt, die in Branchen wie dem Transportwesen, dem Gesundheitswesen, den Finanzdienstleistungen und vielen mehr Einzug gehalten hat. In unserer modernen Zeit ist ein Verständnis von KI und ihren Möglichkeiten für Ihr Unternehmen unerlässlich für Wachstum und Erfolg.Grundlagen der Künstlichen Intelligenz ist da, um Ihnen ein grundlegendes, zeitgemäßes Verständnis von KI und ihren Auswirkungen zu vermitteln. Der Autor Tom Taulli bietet eine ansprechende, nicht-technische Einführung in wichtige Konzepte wie maschinelles Lernen, Deep Learning, natürliche Sprachverarbeitung (NLP), Robotik und mehr. Taulli führt Sie nicht nur durch reale Fallstudien und praktische Implementierungsschritte, sondern nutzt sein Fachwissen auch, um auf die größeren Fragen einzugehen, die KI umgeben. Dazu gehören gesellschaftliche Trends, ethische Fragen und die zukünftigen Auswirkungen von KI auf Regierungen, Unternehmensstrukturen und das tägliche Leben.Google, Amazon, Facebook und ähnliche Tech-Giganten sind bei weitem nicht die einzigen Unternehmen, auf die künstliche Intelligenz eine unglaublich bedeutende Auswirkung hat - und weiterhin haben wird. KI ist die Gegenwart und die Zukunft Ihres Unternehmens und Ihres Privatlebens. Die Vertiefung Ihrer Kenntnisse in diesem Bereich ist von unschätzbarem Wert für Ihre Vorbereitung auf die Zukunft der Technik, und Grundlagen der Künstlichen Intelligenz ist der unverzichtbare Leitfaden, nach dem Sie gesucht haben.Was Sie lernen werdenStudium der Grundprinzipien für KI-Ansätze wie maschinelles Lernen, Deep Learning und NLP (Natural Language Processing)Entdecken Sie die besten Praktiken zur erfolgreichen Implementierung von KI anhand von Fallstudien wie Uber, Facebook, Waymo, UiPath und Stitch FixVerstehen Sie, wie KI-Funktionen für Roboter das Geschäft verbessern könnenEinsatz von Chatbots und Robotic Processing Automation (RPA) zur Kosteneinsparung und Verbesserung des KundendienstesVermeiden Sie kostspielige StolpersteineErkennen von ethischen Bedenken und anderen Risikofaktoren beim Einsatz künstlicher IntelligenzUntersuchen Sie langanhaltende Trends und wie sie sich auf Ihr Unternehmen auswirken könnenFür wen dieses Buch bestimmt istLeser ohne technischen Hintergrund, z. B. Manager, die KI verstehen und Lösungen bewerten wollen.Dieses Buch stellt die Übersetzung der englischsprachigen Originalausgabe dar. Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz erstellt (maschinelle Übersetzung mit DeepL.com). Eine anschließende manuelle Überarbeitung erfolgte vor allem nach inhaltlichen Gesichtspunkten, so dass das Buch stilistisch von einer herkömmlichen Übersetzung abweichen kann.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.