Udvidet returret til d. 31. januar 2025

Neurale net og fuzzy systemer

Her finder du spændende bøger om Neurale net og fuzzy systemer. Nedenfor er et flot udvalg af over 42 bøger om emnet.
Vis mere
Filter
Filter
Sorter efterSorter Populære
  • af Santosh Kumar Das
    1.583,95 kr.

    This book helps to enhance the application of fuzzy logic optimization in the areas of science and engineering. It includes implementation and models and paradigms, such as path planning and routing design for different wireless networks, organization behavior strategies models, and so forth. It also:Explains inventory control management, uncertainties management, loss minimization, game optimization, data analysis and prediction, different decision-makingsystem and management, and so forthDescribes applicability of fuzzy optimization techniques in areas of science and managementResolves several issues based on uncertainty using member functionHelps map different problems based on mathematical modelsIncludes issues and problems based on linear and nonlinear optimizationsFocuses on management science such as manpower management and inventory planningThis book is aimed at researchers and graduate students in signal processing, power systems, systems and industrial engineering, and computer networks.

  • af Jean-Claude Heudin
    182,95 kr.

    Nouvelle édition mise à jour. Après des résultats spectaculaires, dont la victoire d'AlphaGo sur le meilleur joueur mondial de Go, le Deep Learning suscite autant d'intérêts que d'interrogations. Inspiré au départ par une métaphore biologique, celle du cerveau, le domaine des réseaux de neurones est devenu l'un des principaux axes de recherche de l'intelligence artificielle. Quel que soit le secteur d'activité, pas un seul en effet ne semble échapper aux applications du Deep Learning.Quels sont les principes des réseaux de neurones ? Comment fonctionnent-ils ? Quand et pourquoi les utiliser ? Sont-ils simples à mettre en oeuvre ? Qu'est-ce qu'on entend réellement par Deep Learning ?Jean-Claude Heudin propose avec ce livre de répondre à ces questions. Dans un style direct et richement illustré, les explications sont abordables par le plus grand nombre, avec une mise en pratique au travers d'exemples. Pour comprendre le Deep Learning, nul besoin ici d'un fort niveau en mathématiques. Les principes de calcul sont réduits à des opérations simples et les exemples de programmation sont accessibles. Ce livre s'adresse à tous ceux qui souhaitent comprendre concrètement les enjeux du Deep Learning.

  • af Jude Hemanth
    1.762,95 kr.

    This book explores the possible applications of Artificial Intelligence in Virtual environments. These were previously mainly associated with gaming, but have largely extended their area of application, and are nowadays used for promoting collaboration in work environments, for training purposes, for management of anxiety and pain, etc.. The development of Artificial Intelligence has given new dimensions to the research in this field.

  • af Lan Researcher Zou
    1.401,95 kr.

    Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications.

  • af Kashmir Hill
    105,95 kr.

    A thrilling investigation into the secret world of facial recognition technology from an award-winning journalist

  • af Ronald T. Kneusel
    507,95 kr.

    To truly understand the power of deel learning, you need to grasp the mathematical concepts that make it tick. "Math for deep learning" will give you a working knowledge of probability, statistics, linear algebra, and differential calculus-- the essential math subfields required to practice deep learning successfully. Each subfield is explained with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. The book begins with fundamentals such as Bayes' theorem before progressing to more advanced concepts like training neural networks using vectors, matrices, and derivatives of functions. You'll then put all this math to use as you explore and implement backpropagation and gradient descent-- the foundational algorithms that have enabled the AI revolution.

  • af Cesare Alippi, Derong Liu, Haibo He, mfl.
    1.134,95 kr.

    The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.

  • af Da Ruan, Xuzhu Wang & Etienne E. Kerre
    1.103,95 kr.

  • af Hisao Ishibuchi, Tomoharu Nakashima & Manabu Nii
    1.688,95 kr.

    Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod­ els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe­ matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com­ puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter­ net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model­ ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability.

  • af Jun Wang, Fuliang Yin & Chengan Guo
    1.165,95 kr.

    This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19-21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.

  • af Igor Aizenberg
    1.679,95 - 1.760,95 kr.

    Complex-valued neural networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book on the multi-valued neuron (MVN) and MVN-based neural networks covers MVN theory, learning, and applications.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.