Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The goal of the book is to give the reader, specialist and non-specialist useable and modern mathematical tools in their research and analysis. This new text is intended for graduate students and researchers in applied mathematics, physical sciences and engineering. The careful explanations, accessible writing style, and many illustrations/examples also make it suitable for use as a self-study reference by anyone seeking greater understanding and proficiency in the problem solving methods presented. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers.
Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts.Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Nonlinear waves, Burger's equations, KdV equations, and the equations of gas dynamics and porous media are also covered. Volume 3 extends the scope to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics.
Distributions in the Physical and Engineering Sciences is a comprehensive exposition on analytic methods for solving science and engineering problems which is written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practitioners and researchers.
Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts.Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions.
Volume 2
First, we show that combining Gibrat's law at all rm levels with random processes of rm's births and deaths yield Zipf's law under a "balance" condition between a rm's growth and death rate.
A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.