Udvidet returret til d. 31. januar 2025

Bøger af Francis Preston Venable

Filter
Filter
Sorter efterSorter Populære
  • af Francis Preston Venable
    287,95 kr.

    Radioactivity is a fascinating subject that has captured the imagination of scientists and laypeople alike. In this brief account, Francis Preston Venable provides an accessible introduction to the topic, including its history, key discoveries, and practical applications. This volume is a must-have for anyone interested in the field of radioactivity.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it.This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

  • af Francis Preston Venable
    188,95 kr.

    This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ History Of Chemistry reprint Francis Preston Venable D.C. Heath & Co., 1922 Science; Chemistry; General; Chemistry; History / General; Science / Chemistry / General

  • af Francis Preston Venable
    242,95 - 382,95 kr.

    This scarce antiquarian book is a facsimile reprint of the original. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment for protecting, preserving, and promoting the world's literature in affordable, high quality, modern editions that are true to the original work.

  • af Francis Preston Venable
    162,95 kr.

  • af Francis Preston Venable
    77,95 kr.

    The object of this brief treatise, A Brief Account of Radioactivity, is to give a simple account of the development of our knowledge of radioactivity and its bearing on chemical and physical science. Mathematical processes will be omitted in this science journal, as it is sufficient to give the assured results from calculations which are likely to be beyond the training of the reader. Radioactive decay (also known as nuclear decay or radioactivity) is the process by which an unstable atomic nucleus loses energy (in terms of mass in its rest frame) by emitting radiation, such as an alpha particle, beta particle with neutrino or only a neutrino in the case of electron capture, gamma ray, or electron in the case of internal conversion. A material containing such unstable nuclei is considered radioactive. Certain highly excited short-lived nuclear states can decay through neutron emission, or more rarely, proton emission. Radioactive decay is a stochastic (i.e. random) process at the level of single atoms, in that, according to quantum theory, it is impossible to predict when a particular atom will decay, [1][2][3] regardless of how long the atom has existed. However, for a collection of atoms, the collection's expected decay rate is characterized in terms of their measured decay constants or half-lives. This is the basis of radiometric dating. The half-lives of radioactive atoms have no known upper limit, spanning a time range of over 55 orders of magnitude, from nearly instantaneous to far longer than the age of the universe. A radioactive nucleus with zero spin can have no defined orientation, and hence emits the total momentum of its decay products isotropically (all directions and without bias). If there are multiple particles produced during a single decay, as in beta decay, their relative angular distribution, or spin directions may not be isotropic. Decay products from a nucleus with spin may be distributed non-isotropically with respect to that spin direction, either because of an external influence such as an electromagnetic field, or because the nucleus was produced in a dynamic process that constrained the direction of its spin. Such a parent process could be a previous decay, or a nuclear reaction. The decaying nucleus is called the parent radionuclide, and the process produces at least one daughter nuclide. Except for gamma decay or internal conversion from a nuclear excited state, the decay is a nuclear transmutation resulting in a daughter containing a different number of protons or neutrons (or both). When the number of protons changes, an atom of a different chemical element is created. The first decay processes to be discovered were alpha decay, beta decay, and gamma decay. Alpha decay occurs when the nucleus ejects an alpha particle (helium nucleus). This is the most common process of emitting nucleons, but highly excited nuclei can eject single nucleons, or in the case of cluster decay, specific light nuclei of other elements. Beta decay occurs in two ways: (i) beta-minus decay, when the nucleus emits an electron and an antineutrino in a process that changes a neutron to a proton, or beta-plus decay, when the nucleus emits a positron and a neutrino in a process that changes a proton to a neutron. Highly excited neutron-rich nuclei, formed as the product of other types of decay, occasionally lose energy by way of neutron emission, resulting in a change from one isotope to another of the same element. The nucleus may capture an orbiting electron, causing a proton to convert into a neutron in a process called electron capture. All of these processes result in a well-defined nuclear transmutation. By contrast, there are radioactive decay processes that do not result in a nuclear transmutation. The energy of an excited nucleus may be emitted as a gamma ray in a process called gamma decay, or that energy may be lost when the nucleus interacts with an orbital electron causing its ejection from the atom.

  • af Francis Preston Venable
    192,95 - 337,95 kr.

  • af Francis Preston Venable
    257,95 - 367,95 kr.

  • af Francis Preston Venable & James Lewis Howe
    247,95 - 362,95 kr.

  • af Francis Preston Venable
    192,95 - 337,95 kr.

  • af Francis Preston Venable
    349,95 kr.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.