Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This volume is focused on the review of recent algorithmic and mathematical advances and the development of new research directions for Mathematical Model Approximations via RAMSES (Reduced order models, Approximation theory, Machine learning, Surrogates, Emulators, Simulators) in the setting of parametrized partial differential equations also with sparse and noisy data in high-dimensional parameter spaces. The book is a valuable resource for researchers, as well as masters and Ph.D students.
The book is made up by several worked out problems concerning the application of reduced order modeling to different parametric partial differential equations problems with an increasing degree of complexity.This work is based on some experience acquired during lectures and exercises in classes taught at SISSA Mathematics Area in the Doctoral Programme "Mathematical Analysis, Modelling and Applications", especially in computational mechanics classes, as well as regular courses previously taught at EPF Lausanne and during several summer and winter schools. The book is a companion for master and doctoral degree classes by allowing to go more deeply inside some partial differential equations worked out problems, examples and even exercises, but it is also addressed for researchers who are newcomers in computational mechanics with reduced order modeling. In order to discuss computational results for the worked out problems presented in this booklet, we will rely on the RBniCS Project. The RBniCS Project contains an implementation in FEniCS of the reduced order modeling techniques (such as certified reduced basis method and Proper Orthogonal Decomposition-Galerkin methods) for parametric problems that will be introduced in this booklet.
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.