Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The International Conference "e;Algebraic Geometry and Analytic Geometry, Tokyo 1990"e; was held at Tokyo Metropolitan University and the Tokyo Training Center of Daihyaku Mutual Life Insurance Co., from August 13 through August 17, 1990, under the co-sponsorship of the Mathematical Society of Japan. It was one of the satellite conferences of ICM90, Kyoto, and approximately 300 participants, including more than 100 from overseas, attended the conference. The academic program was divided into two parts, the morning sessions and the afternoon sessions. The morning sessions were held at Tokyo Metropolitan University, and two one-hour plenary lectures were delivered every day. The afternoon sessions at the Tokyo Training Center, intended for a more specialized audience, consisted of four separate subsessions: Arithemetic Geometry, Algebraic Geometry, Analytic Geometry I and Analytic Geometry II. This book contains papers which grew out of the talks at the conference. The committee in charge of the organization and program consisted of A. Fujiki, K. Kato, T. Katsura, Y. Kawamata, Y. Miyaoka, S. Mori, K. Saito, N. Sasakura, T. Suwa and K. Watanabe. We would like to take this opportunity to thank the many mathematicians and students who cooperated to make the conference possible, especially Professors T. Fukui, S. Ishii, Y. Kitaoka, M. Miyanishi, Y. Namikawa, T. Oda, F. Sakai and T. Shioda for their valuable advice and assistance in organizing this conference. Financial support was mainly provided by personal contributions from Professors M.
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.