Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book offers the comprehensive study of one of the foundational topics in Mathematics, known as Metric Spaces. The book delivers the concepts in an appropriate and concise manner, at the same time rich in illustrations and exercise problems. Special focus has been laid on important theorems like Baire's Category theorem, Heine-Borel theorem, Ascoli-Arzela Theorem, etc, which play a crucial role in the study of metric spaces.The additional chapter on Cofinal completeness, UC spaces and finite chainability makes the text unique of its kind. This helps the students in:taking the secondary step towards analysis on metric spaces,realizing the connection between the two most important classes of functions, continuous functions and uniformly continuous functions,understanding the gap between compact metric spaces and complete metric spaces.Readers will also find brief discussions on various subtleties of continuity like subcontinuity, upper semi-continuity, lower semi-continuity, etc. The interested readers will be motivated to explore the special classes of functions between metric spaces to further extent.Consequently, the book becomes a complete package: it makes the foundational pillars strong and develops the interest of students to pursue research in metric spaces. The book is useful for third and fourth year undergraduate students and it is also helpful for graduate students and researchers.
The monograph targets a huge variety of characterizations of cofinally complete metric spaces. These spaces are studied in terms of several properties of some classes of functions between metric spaces that are stronger than the continuous functions such as Cauchy-regular, uniformly continuous, strongly uniformly continuous, and various Lipschitz-type functions. There is one chapter that is dedicated to studying cofinally complete metric spaces in terms of hyperspace and function space topologies. Along with that, various characterizations are studied in terms of geometric functionals, sequences, Cantor-type conditions, etc. The study of such spaces is interesting as well as it has nice connections with various other branches of mathematics such as convex analysis, optimization theory, fixed point theory, functional analysis and approximation theory. But until now, there has been no textbook or research monograph which presents the entire theory of these spaces in a comprehensive way. The study of the aforesaid spaces and their variants is still a vibrant area of research, and many prominent researchers are working in this area.The book is targeted at researchers as well as graduate students interested in real functions, analysis on metric spaces, topology, and the aforementioned. Since the monograph often discusses various properties of Lipschitz-type functions, it would be of interest to people interested in PDEs as well.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.