Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The use of the symmetries of a physical system in the study of its dynamics has a long history that goes back to the founders of c1assical mechanics. Symmetry-based tech- niques are often implemented by using the integrals 01 motion that one can sometimes associate to these symmetries. The integrals of motion of a dynamical system are quan- tities that are conserved along the fiow of that system. In c1assieal mechanics symme- tries are usually induced by point transformations, that is, they come exc1usively from symmetries of the configuration space; the intimate connection between integrals of motion and symmetries was formalized in this context by NOETHER (1918). This idea can be generalized to many symmetries of the entire phase space of a given system, by associating to the Lie algebra action encoding the symmetry, a function from the phase space to the dual of the Lie algebra. This map, whose level sets are preserved by the dynamics of any symmetrie system, is referred to in modern terms as a momentum map of the symmetry, a construction already present in the work of LIE (1890). Its remarkable properties were rediscovered by KOSTANT (1965) and SOURlAU (1966, 1969) in the general case and by SMALE (1970) for the lifted action to the co tangent bundle of a configuration space. For the his tory of the momentum map we refer to WEINSTEIN (1983b) and MARSDEN AND RATIU (1999), 11. 2.
CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRODINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRODINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrodinger operator in 253 a strip 259 2. Ergodie Schrodinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.
Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Our motivation for putting together this book was the need for a single source reference that could be used as an introduction to cell-mediated cytotoxicity for newcomers to this field, such as students and fellows beginning work in our laboratories. At present no such book is available, and we felt that it would be useful as a teaching tool and as a way of conveying our enthusiasm about recent progress in the cytotoxicity field to our colleagues in allied areas. It was with some hesitation that we approached our colleagues with the proposal for this book, and we were pleased to find them very supportive of the idea and willing to participate. We thought it important to broaden the scope of the book to include historical, molecular, cell biological, and clinical aspects of cell-mediated cytotoxicity. To our knowledge this is the first book on cell-mediated cytotoxicity with such a broad scope. Historically, studies on cellular cytotoxicity were part of cellular immunology from its origin. One development of tremendous import was the advent of the 51 Cr assay, which allowed this arm of the immune response to be measured easily and quantitatively. Thus, a readout of this effector pathway is available within a few hours; other immune effector functions can take days or even longer to assay, and the assays are often less quantitative.
The past decade has seen a resurgence of interest in the study of the asymp- totic behavior of sums formed from an independent sequence of random variables. In particular, recent attention has focused on the interaction of the extreme summands with, and their influence upon, the sum. As ob- served by many authors, the limit theory for sums can be meaningfully expanded far beyond the scope of the classical theory if an "e;intermediate"e; portion (i. e. , an unbounded number but a vanishingly small proportion) of the extreme summands in the sum are deleted or otherwise modified (''trimmed',). The role of the normal law is magnified in these intermediate trimmed theories in that most or all of the resulting limit laws involve variance-mixtures of normals. The objective of this volume is to present the main approaches to this study of intermediate trimmed sums which have been developed so far, and to illustrate the methods with a variety of new results. The presentation has been divided into two parts. Part I explores the approaches which have evolved from classical analytical techniques (condi- tionin~, Fourier methods, symmetrization, triangular array theory). Part II is Msed on the quantile transform technique and utilizes weak and strong approximations to uniform empirical process. The analytic approaches of Part I are represented by five articles involving two groups of authors.
This volume contains the proceedings of the U.S. Australia workshop on Complex Interconnected Biological Systems held in Albany, Western Australia January 1-5, 1989. The workshop was jointly sponsored by the Department of Industry, Trade and Commerce (Australia), and the Na- tional Science Foundation (USA) under the US-Australia agreement. Biological systems are typically hard to study mathematically. This is particularly so in the case of systems with strong interconnections, such as ecosystems or networks of neurons. In the past few years there have been substantial improvements in the mathematical tools available for study- ing complexity. Theoretical advances include substantially improved un- derstanding of the features of nonlinear systems that lead to important behaviour patterns such as chaos. Practical advances include improved modelling techniques, and deeper understanding of complexity indicators such as fractal dimension. Game theory is now playing an increasingly important role in under- standing and describing evolutionary processes in interconnected systems. The strategies of individuals which affect each other's fitness may be incor- porated into models as parameters. Strategies which have the property of evolutionary stabilty result from particular parameter values which may be the main feature of living determined using game theoretic methods. Since systems is that they evolve, it seems appropriate that any model used to describe such systems should have this feature as well. Evolutionary game theory should lead the way in the development of such methods.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.