Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Metamaterials have provided applications in spectral ranges covering radio frequencies and ultraviolet. However, most applications have been extrapolated to the visible or near-infrared after being developed at the GHz level. This is due to technological reasons since fabrication of microwave antennas is not as demanding as THz resonators or plasmonic nanostructures. Accordingly, this book has been divided into three parts. In the first part, fundamentals of metamaterials and metadevices are discussed, while describing recent advances in the field. In the second part, the discussion is extended to the different spectral ranges focusing on the strategies for enabling the reconfigurability of metadevices. Given the increasing interest in THz applications, these can be found in the third part.
Scientifically defined in 1880 by the Curie brothers, piezoelectricity - from the Greek piezein, meaning to press (squeeze), and ilektron, meaning amber, a material with electrostatic properties - is a phenomenon with many applications. The related piezoelectric materials have been undergoing a long-lasting evolution over the years until today. The field of organic and inorganic piezoelectric materials is continuously expanding in terms of new substances used, new structures, and new applications. The seven chapters of this book present modern aspects and technological advances in the field of piezoelectric materials and applications. To present a balanced view of the field, some chapters focus on new piezoelectric materials and structures, while others examine interesting applications of piezoelectric sensors, energy harvesters, and actuators.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.