Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "e;easy to solve"e;, has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "e;stable"e;. These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well- posed problem.
The beginnings of human civili zation can be traced back to the time , ne- ly 12 ,000 years ago , when th e early humans gradually ch anged from a life of hunting and gathering food , to producing food. This beginning of pri- tive agriculture ensured a dependable supply of food , and fostered the living together of people in groups and the development of s o c i e ty. During th is time, plant s e e ds were recognized a s a valuable s o ur c e of food and nutrition , and began to be used for growing plants for food. Ever s i n c e , plant seeds have played an important role in the development of the human civilization . Even today, s e e ds of a few crop s p e c i e s , s uc h as the cereals and legume s, are the primary s o u r c e of most human food , and the predominant commodity in international agriculture. Owing to their great importance as food for human s and in international trade , seeds have been a favorite object of s t u d y by developmental biologists and physiologi sts , nutritionist s and chem i sts . A wealth of useful information i s available on th e biology of seed s .
Motion-based recognition deals with the recognition of an object and/or its motion, based on motion in a series of images. In this approach, a sequence containing a large number of frames is used to extract motion information. The advantage is that a longer sequence leads to recognition of higher level motions, like walking or running, which consist of a complex and coordinated series of events. Unlike much previous research in motion, this approach does not require explicit reconstruction of shape from the images prior to recognition. This book provides the state-of-the-art in this rapidly developing discipline. It consists of a collection of invited chapters by leading researchers in the world covering various aspects of motion-based recognition including lipreading, gesture recognition, facial expression recognition, gait analysis, cyclic motion detection, and activity recognition. Audience: This volume will be of interest to researchers and post- graduate students whose work involves computer vision, robotics and image processing.
This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.
Large areas of the warm, humid tropics in Southeast Asia, the Pacific, Latin America, the Caribbean, and Africa are hilly or mountainous. Jackson and Scherr (1995) estimate that these tropical hillside areas are inhabited by 500 million people, or one-tenth of the current world population, many of whom practice subsistence agriculture. The region most affected is Asia which has the lowest area of arable land per capita. Aside from limited areas of irrigated terraces, most of the sloping land, which constitutes 60% to 90% of the land resources in many Southeast Asian countries, has been by-passed in the economic development of the region (Maglinao and Hashim, 1993). Poverty in these areas is often high, in contrast to the relative wealth of irri- gated rice farms in lowland areas that benefited from the green revolution. Rapid population growth in some countries is also exacerbating the problems of hillside areas. Increasingly, people are migrating from high-potential lowland areas where land is scarce to more remote hillside areas. Such migra- tion, together with inherent high population growth, is forcing a transforma- tion in land use from subsistence to permanent agriculture on fragile slopes, and is creating a new suite of social, economic, and environmental problems (Garrity, 1993; Maglinao and Hashim, 1993).
Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision. Audience: Researchers studying mathematics, computers and robotics.
The editors wish to thank the European Science Foundation for its support of the programme on the Evolution of Chemistry in Europe, 1789-1939, as well as for sponsoring the publication of this volume. Through the subdivision of this initiative that deals specifically with chemical industry it has been possible for historians of science, technology, business and economics to share often widely differing viewpoints and develop consensus across disciplinary and cultural boundaries. The contents of this volume are based on the third of three workshops that have considered the emergence of the modern European chemical industry prior to 1939, the first held in Liege (1994), the second in Maastricht (1995), and the third in Strasbourg (1996). All contributors and participants are thanked for their participation in often lively and informative debates. The generous hospitality of the European Science Foundation and its staff in Strasbourg is gratefully acknowledged. Introduction Emerging chemical knowledge and the development of chemical industry, and particularly the interaction between them, offer rich fields of study for the historian. This is reflected in the contents of the three workshops dealing with the emergence of chemical industry held under the aegis of the European Science Foundation's Evolution of Chemistry in Europe, 1789-1939, programme. The first workshop focused mainly on science for industry, 1789- 1850, and the second on the two-way traffic between science and industry, 1850-1914. The third workshop, dealing with the period 1900-1939, covers similar issues, but within different, and wider, contexts.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.