Vi bøger
Levering: 1 - 2 hverdage

Machine Learning Techniques for Gait Biometric Recognition - James Eric Mason - Bog

- Using the Ground Reaction Force

Bag om Machine Learning Techniques for Gait Biometric Recognition

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition· provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783319804866
  • Indbinding:
  • Paperback
  • Sideantal:
  • 223
  • Udgivet:
  • 30. marts 2018
  • Udgave:
  • 12016
  • Størrelse:
  • 233x156x20 mm.
  • Vægt:
  • 414 g.
  • 8-11 hverdage.
  • 17. januar 2025
På lager

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Machine Learning Techniques for Gait Biometric Recognition

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF.

This book
· introduces novel machine-learning-based temporal normalization techniques
· bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition· provides detailed discussions of key research challenges and open research issues in gait biometrics recognition
· compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

Brugerbedømmelser af Machine Learning Techniques for Gait Biometric Recognition



Find lignende bøger
Bogen Machine Learning Techniques for Gait Biometric Recognition findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.