Udvidet returret til d. 31. januar 2025

Transcriptome Data Analysis - Rajeev K Azad - Bog

Transcriptome Data Analysisaf Rajeev K Azad
Bag om Transcriptome Data Analysis

This detailed volume presents a comprehensive exploration of the advances in transcriptomics, with a focus on methods and pipelines for transcriptome data analysis. In addition to well-established RNA sequencing (RNA-Seq) data analysis protocols, the chapters also examine specialized pipelines, such as multi-omics data integration and analysis, gene interaction network construction, single-cell trajectory inference, detection of structural variants, application of machine learning, and more. As part of the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that leads to best results in the lab.    Authoritative and practical, Transcriptome Data Analysis serves as an ideal resource for educators and researchers looking to understand new developments in the field, learn usage of the protocols for transcriptome data analysis, and implement the tools or pipelines to address relevant problemsof their interest.   Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781071638859
  • Indbinding:
  • Hardback
  • Udgivet:
  • 28. juli 2024
  • Størrelse:
  • 178x254x24 mm.
  • Vægt:
  • 921 g.
  • 8-11 hverdage.
  • 7. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Transcriptome Data Analysis

This detailed volume presents a comprehensive exploration of the advances in transcriptomics, with a focus on methods and pipelines for transcriptome data analysis. In addition to well-established RNA sequencing (RNA-Seq) data analysis protocols, the chapters also examine specialized pipelines, such as multi-omics data integration and analysis, gene interaction network construction, single-cell trajectory inference, detection of structural variants, application of machine learning, and more. As part of the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that leads to best results in the lab. 
 
Authoritative and practical, Transcriptome Data Analysis serves as an ideal resource for educators and researchers looking to understand new developments in the field, learn usage of the protocols for transcriptome data analysis, and implement the tools or pipelines to address relevant problemsof their interest.
 
Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Brugerbedømmelser af Transcriptome Data Analysis



Find lignende bøger
Bogen Transcriptome Data Analysis findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.