Udvidet returret til d. 31. januar 2025

Vorlesung UEber Differential- Und Integralrechnung 1861/62 - Richard Dedekind - Bog

Bag om Vorlesung UEber Differential- Und Integralrechnung 1861/62

§ 1. VORSTELLUNG DES ZAHLENGEBIETES Wir konnen jede ganze Zahl bildlich oder geometrisch darstellen. Nehmen wir zum Beispiel eine Linie von beliebiger Lange an, und auf derselben einen Punkt o. So konnen wir die Zahl eins so darstellen, indem wir eine beliebige konstante Lange auf dieser vom Nullpunkt aus nach rechts auftragen. Dieses Stuck reprasen­ tirt uns also die Zahl eins. Wollen wir die Zahl 2 geometrisch darstellen, so wissen wir, dass 2 = 1 + 1 ist. Wir haben also nur die Einheit zweimal vom Nullpunkt aus aufzutragen, oder von 1 aus noch einmal und erhalten das geometrische Bild der Zahl 2 . Urn das Bild der Zahl 3 zu erhalten, konnen wir unsere Langeneinheit dreimal vom Nullpunkt aus auftragen. Ebenso k- nen wir 4,5,6,7,8 ... bis bildlich darstellen. Wollen wir hingegen eine gebrochene Zahl geometrisch darstellen, zum Beispiel t, so waren wir dies mit unsern Langeneinheiten 7 3 3 nicht imstande, denn 4 = 14 ' und 4 ist eine Grosse, die kleiner ist als 1. Wir mussen daher unsere Lange in noch klei­ nere Theile eintheilen und zwar in Viertel. Dann sind wir erst 7 imstande, 4 geometrisch darzustellen.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783528089023
  • Indbinding:
  • Paperback
  • Sideantal:
  • 350
  • Udgivet:
  • 1. januar 1985
  • Udgave:
  • 11985
  • Størrelse:
  • 234x156x19 mm.
  • Vægt:
  • 513 g.
  • 8-11 hverdage.
  • 6. december 2024

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Vorlesung UEber Differential- Und Integralrechnung 1861/62

§ 1. VORSTELLUNG DES ZAHLENGEBIETES Wir konnen jede ganze Zahl bildlich oder geometrisch darstellen. Nehmen wir zum Beispiel eine Linie von beliebiger Lange an, und auf derselben einen Punkt o. So konnen wir die Zahl eins so darstellen, indem wir eine beliebige konstante Lange auf dieser vom Nullpunkt aus nach rechts auftragen. Dieses Stuck reprasen­ tirt uns also die Zahl eins. Wollen wir die Zahl 2 geometrisch darstellen, so wissen wir, dass 2 = 1 + 1 ist. Wir haben also nur die Einheit zweimal vom Nullpunkt aus aufzutragen, oder von 1 aus noch einmal und erhalten das geometrische Bild der Zahl 2 . Urn das Bild der Zahl 3 zu erhalten, konnen wir unsere Langeneinheit dreimal vom Nullpunkt aus auftragen. Ebenso k- nen wir 4,5,6,7,8 ... bis bildlich darstellen. Wollen wir hingegen eine gebrochene Zahl geometrisch darstellen, zum Beispiel t, so waren wir dies mit unsern Langeneinheiten 7 3 3 nicht imstande, denn 4 = 14 ' und 4 ist eine Grosse, die kleiner ist als 1. Wir mussen daher unsere Lange in noch klei­ nere Theile eintheilen und zwar in Viertel. Dann sind wir erst 7 imstande, 4 geometrisch darzustellen.

Brugerbedømmelser af Vorlesung UEber Differential- Und Integralrechnung 1861/62



Find lignende bøger
Bogen Vorlesung UEber Differential- Und Integralrechnung 1861/62 findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.