Udvidet returret til d. 31. januar 2025
Bag om Zur Aerodynamik Des Ringflugels

Die Wirkung eines Ruderausschlags auf die Druckverteilung eines unend­ lich dünnen, nahezu kreiszylindrischen Ringflügels (Länge L, Durchmesser D = 2R, Vorder- bzw. Hinterkante bei x = -L/2 bzw. x = L/2) kann im Prinzip nach dem in [2J beschriebenen Verfahren berechnet werden: Ist (in Zylinderkoordinaten x, r, f; vgl. Abb. 1, S. 24) 0() (1 ,1 ) c;(. (~,~) = L oln (§) cos n y?, n=o die Fourierentwicklung des (symmetrisch in ~ angenommenen) lokalen An­ stellwinkels, so ergibt sich die Zirkulationsverteilung ~ der Ringwirbel (und daraus die Druckdifferenz ß p = ~ V l) als 00 (1 ,2) wobei sich die Fourierkoeffizienten gn(3) aus der Integralgleichung 1 2~ ) -1 1 (1 ,3) n = 0, 1, 2, ¿¿¿¿ (11) d ~' , + ~ ) gn (5') U n -1 LID bestimmen. Die Kerne Un(~) sind in [2J formelmäßig und für n = 0,1,2 als Schaubild angegeben, im vorliegenden Bericht sind sie für n = 0,1, 2, 3, 5 vertafelt bzw. aufgezeichnet (Tabelle 1, S. 17, 18, 19 und 20 und Abbildung 2, S. 24). Die Lösung von (1,3) erfolgt durch Entwicklung von gn(~) bzw. ~n(j) in eine Birnbaum- bzw. Fourier-Reihe: 00 ß = c ctg- - cos ß gn(~) c"'n sin l' ~ , +L on 2 5 )' =1 oe a on (1 ,5) L . = -2- + o(n (3) a 9 n cos s> S .

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783663041559
  • Indbinding:
  • Paperback
  • Sideantal:
  • 82
  • Udgivet:
  • 1. januar 1957
  • Udgave:
  • 1957
  • Størrelse:
  • 297x210x5 mm.
  • Vægt:
  • 231 g.
  • 8-11 hverdage.
  • 7. december 2024

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Zur Aerodynamik Des Ringflugels

Die Wirkung eines Ruderausschlags auf die Druckverteilung eines unend­ lich dünnen, nahezu kreiszylindrischen Ringflügels (Länge L, Durchmesser D = 2R, Vorder- bzw. Hinterkante bei x = -L/2 bzw. x = L/2) kann im Prinzip nach dem in [2J beschriebenen Verfahren berechnet werden: Ist (in Zylinderkoordinaten x, r, f; vgl. Abb. 1, S. 24) 0() (1 ,1 ) c;(. (~,~) = L oln (§) cos n y?, n=o die Fourierentwicklung des (symmetrisch in ~ angenommenen) lokalen An­ stellwinkels, so ergibt sich die Zirkulationsverteilung ~ der Ringwirbel (und daraus die Druckdifferenz ß p = ~ V l) als 00 (1 ,2) wobei sich die Fourierkoeffizienten gn(3) aus der Integralgleichung 1 2~ ) -1 1 (1 ,3) n = 0, 1, 2, ¿¿¿¿ (11) d ~' , + ~ ) gn (5') U n -1 LID bestimmen. Die Kerne Un(~) sind in [2J formelmäßig und für n = 0,1,2 als Schaubild angegeben, im vorliegenden Bericht sind sie für n = 0,1, 2, 3, 5 vertafelt bzw. aufgezeichnet (Tabelle 1, S. 17, 18, 19 und 20 und Abbildung 2, S. 24). Die Lösung von (1,3) erfolgt durch Entwicklung von gn(~) bzw. ~n(j) in eine Birnbaum- bzw. Fourier-Reihe: 00 ß = c ctg- - cos ß gn(~) c"'n sin l' ~ , +L on 2 5 )' =1 oe a on (1 ,5) L . = -2- + o(n (3) a 9 n cos s> S .

Brugerbedømmelser af Zur Aerodynamik Des Ringflugels



Find lignende bøger
Bogen Zur Aerodynamik Des Ringflugels findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.