Udvidet returret til d. 31. januar 2025

Zur Stabilitatsprufung Von Regelungssystemen Mittels Zweiortskurvenverfahren - Franz Kolberg - Bog

Bag om Zur Stabilitatsprufung Von Regelungssystemen Mittels Zweiortskurvenverfahren

Neben den klassischen algebraischen Stabilitätskriterien werden zur Unter­ suchung der Stabilität von Regelvorgängen häufig die Ortskurvenverfahren be­ nutzt, welche aus dem Verlauf der Ortskurve des Frequenzganges F (p) des auf~ 0 geschnittenen Regelkreises Rückschlüsse auf die Stabilität bzw. Instabilität des Regelvorganges erlauben. Grundlegend für die Kriterien dieser Art ist die Arbeit von NYQUIST [16]. NYQUIST hat darin notwendige und hinreichende Ortskurven­ bedingungen für die Stabilität des geschlossenen Regelkreises angegeben. Hier­ bei setzte NYQUIST voraus, daß der aufgeschnittene Regelkreis stabil ist, d. h. daß die Polstellen von Fo(p) sämtlich in der linken Halbebene liegen. Kriterien, die auch den Fall eines instabilen aufgeschnittenen Regelkreises ein­ schließen, findet man u. a. in den Büchern von CHESTNUT-MAYER [2], PoPow [21 ], SoLODOWNIKOW [24] und den Arbeiten von LEHNIGK [13], DzuNG [4], FREY [5], FöLLINGER [6]. w + Xw I I Fa(p) I I X y + I I Fa(p) -j- I z I Abb. 1 Blockschaltbild eines Regelkreises Für den häufig vorkommenden Fall eines Regelkreises mit dem in Abb. 1 dar­ gestellten Blockschaltbild, bei dem zwischen den Frequenzgängen F 0 (p) des aufgeschnittenen Regelkreises, F s (p) der Regelstrecke und FR (p) des Reglers der Zusammenhang Fo(p) =-FR(p) · Fs(p) besteht, liegt nun in der Praxis meist die folgende Fragestellung vor: Zu einer gegebenen, nicht mehr veränderlichen Regelstrecke ist ein Regler so zu bestim­ men, daß der Regelkreis optimale Eigenschaften besitzt, also insbesondere stabil ist.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783663066217
  • Indbinding:
  • Paperback
  • Sideantal:
  • 55
  • Udgivet:
  • 1. januar 1964
  • Udgave:
  • 1964
  • Størrelse:
  • 244x170x3 mm.
  • Vægt:
  • 104 g.
  • 8-11 hverdage.
  • 30. november 2024

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Zur Stabilitatsprufung Von Regelungssystemen Mittels Zweiortskurvenverfahren

Neben den klassischen algebraischen Stabilitätskriterien werden zur Unter­ suchung der Stabilität von Regelvorgängen häufig die Ortskurvenverfahren be­ nutzt, welche aus dem Verlauf der Ortskurve des Frequenzganges F (p) des auf~ 0 geschnittenen Regelkreises Rückschlüsse auf die Stabilität bzw. Instabilität des Regelvorganges erlauben. Grundlegend für die Kriterien dieser Art ist die Arbeit von NYQUIST [16]. NYQUIST hat darin notwendige und hinreichende Ortskurven­ bedingungen für die Stabilität des geschlossenen Regelkreises angegeben. Hier­ bei setzte NYQUIST voraus, daß der aufgeschnittene Regelkreis stabil ist, d. h. daß die Polstellen von Fo(p) sämtlich in der linken Halbebene liegen. Kriterien, die auch den Fall eines instabilen aufgeschnittenen Regelkreises ein­ schließen, findet man u. a. in den Büchern von CHESTNUT-MAYER [2], PoPow [21 ], SoLODOWNIKOW [24] und den Arbeiten von LEHNIGK [13], DzuNG [4], FREY [5], FöLLINGER [6]. w + Xw I I Fa(p) I I X y + I I Fa(p) -j- I z I Abb. 1 Blockschaltbild eines Regelkreises Für den häufig vorkommenden Fall eines Regelkreises mit dem in Abb. 1 dar­ gestellten Blockschaltbild, bei dem zwischen den Frequenzgängen F 0 (p) des aufgeschnittenen Regelkreises, F s (p) der Regelstrecke und FR (p) des Reglers der Zusammenhang Fo(p) =-FR(p) · Fs(p) besteht, liegt nun in der Praxis meist die folgende Fragestellung vor: Zu einer gegebenen, nicht mehr veränderlichen Regelstrecke ist ein Regler so zu bestim­ men, daß der Regelkreis optimale Eigenschaften besitzt, also insbesondere stabil ist.

Brugerbedømmelser af Zur Stabilitatsprufung Von Regelungssystemen Mittels Zweiortskurvenverfahren



Find lignende bøger
Bogen Zur Stabilitatsprufung Von Regelungssystemen Mittels Zweiortskurvenverfahren findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.