Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Fundamentals of Biomechanics introduces the exciting world of how human movement is created and how it can be improved. Teachers, coaches and physical therapists all use biomechanics to help people improve movement and decrease the risk of injury. The book presents a comprehensive review of the major concepts of biomechanics and summarizes them in nine principles of biomechanics. Fundamentals of Biomechanics concludes by showing how these principles can be used by movement professionals to improve human movement. Specific case studies are presented in physical education, coaching, strength and conditioning, and sports medicine.
The human body contains many specialized tissues that are capable of fulfilling an incredible variety of functions necessary for our survival. This volume in the Human Cell Culture Series focuses on mesenchymal tissues and cells. The in vitro study of mesenchymal cells is perhaps the oldest form of human cell culture, beginning with the culturing of fibroblasts. Fibroblasts have long been generically described in the literature, arising from many tissue types upon in vitro cell culture. However, recent studies, many enabled by new molecular biology techniques, have shown considerable diversity in fibroblast type and function, as described within this volume. Mesenchymal tissue types that are described within include bone, cartilage, tendons and ligaments, muscle, adipose tissue, and skin (dermis). The proper function of these tissues is predominantly dependent upon the proper proliferation, differentiation, and function of the mesenchymal cells which make up the tissue. Recent advancements in primary human mesenchymal cell culture have led to remarkable progress in the study of these tissues. Landmark experiments have now demonstrated a stem cell basis for many of these tissues, and, furthermore, significant plasticity and inter-conversion of stem cells between these tissues, resulting in a great deal of contemporary excitement and controversy. Newly-developed mesenchymal cell culture techniques have even lead to novel clinical practices for the treatment of disease.
This book is written in a quick reference style to help clinical and basic researchers, as well as graduate students, in the understanding of hemodynamics. Recent dev- opments in genetics and molecular biology on the one hand, and new noninvasive measurement techniques on the other hand, make it possible to measure and und- stand the hemodynamics of heart and vessels better than ever before. Hemodynamics makes it possible to characterize, in a quantitative way, and even with noninvasive techniques the function of the heart and the arterial system, separately and in c- bination, thereby producing information about what genetic and molecular processes are of importance for cardiovascular function. We have made the layout of the book such that it gives a succinct overview of individual topics in short chapters Therefore every chapter starts with a "e;box"e; c- taining a figure and caption, describing the main aspects of the subject. It is often sufficient to study the contents of this box alone to obtain this basic information, and therefore it is not necessary to read the book from cover to cover.
Medical imaging is increasingly at the base of many breakthroughs in biomedical sciences, becoming a fundamental enabling technology of biomedical scientific progress. Medical Image Analysis presents practical knowledge on medical image computing and analysis and is written by top educators and experts in the field. This text is a modern, practical, broad, and self-contained reference that conveys a mix of essential methodological concepts within different medical domains, reflecting the nature of the discipline today, making it suitable as a course text and a self-learning resource.
Ultra-brief CopyThis book focuses on major trends and challenges in the detection of lung cancer, presenting work aimed at identifying new techniques and their use in biomedical analysis. Volume 1 examines the main applications of computer-aided diagnosis to lung cancer. It is ideal for academics, industry professionals and advanced students.
This volume on Infectious Diseases in an Encyclopedia of Sustainability Science and Technology (ESST) addresses the needs of health care providers and policy makers as well as scientists and engineers. Most of chapters in this volume deal with infectious diseases that directly affect humans, including the detailed characterization of specific pathogens, how they reproduce, how they are transmitted, and the means available to control, eliminate, or eradicate them. In this revised and updated second edition, the number of human infectious diseases covered has been significantly expanded. Other new chapters deal with current leading edge technologies for the diagnosis of pathogens; surveillance including environmental and syndromic surveillance for pathogens; requirements for quality assurance, quality control and the need for biological standards and controls to sustain high quality diagnosis and surveillance; the use of big data for personalized medicine; modeling infectious diseases; zoonotic and vector borne diseases; disease prevention with antibiotics, antivirals and vaccines; and factors that affect ecological balances leading to emergence of new diseases such as climate change and deforestation. Finally, infectious diseases that affect livestock and culture of plants for food, comfort and beauty are also addressed, since we must also consider them when discussing sustainability of humans in our ecosystem.
ITiB'2018 is the 6th Conference on Information Technology in Biomedicine, hosted every two years by the Department of Informatics & Medical Devices, Faculty of Biomedical Engineering, Silesian University of Technology. The Conference is organized under the auspices of the Committee on Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. The meeting has become an established event that helps to address the demand for fast and reliable technologies capable of processing data and delivering results in a user-friendly, timely and mobile manner. Many of these areas are recognized as research and development frontiers in employing new technology in the clinical setting. Technological assistance can be found in prevention, diagnosis, treatment, and rehabilitation alike. Homecare support for any type of disability may improve standard of living and make people's lives safer and more comfortable. The book includes the following sections: o Image Processing o Multimodal Imaging and Computer-aided Surgery o Computer-aided Diagnosis o Signal Processing and Medical Devices o Bioinformatics o Modelling & Simulation o Analytics in Action on the SAS Platform o Assistive Technologies and Affective Computing (ATAC)
This book provides readers with an introduction to the materials and devices necessary for flexible sensors and electronics, followed by common techniques for fabrication of such devices and system-level integration. Key insights into fabrication and processing will guide readers through the tradeoff choices in designing such platforms. A comprehensive review of two specific, flexible bioelectronic platforms, related to smart bandages for wound monitoring and thread-based diagnostics for wearable health, will demonstrate practical application at the system level. The book also provides a unique electrical engineering perspective by reviewing circuit architectures for low noise signal conditioning of weak signals from sensors,, and for low power analog to digital converters for signal acquisition. To achieve energy autonomy, authors provide several example of CMOS energy harvesting front end circuits and voltage boosters. Beyond circuit architectures, the book also provides a review of the modern theory of sampling and recovery of sparse signals, also known as compressed sensing. They then highlight how these principles can be leveraged for design and implementation of efficient signal acquisition hardware and reliable processing of acquired data for flexible electronic platforms.
State of the Art in Neural Networks and Their Applications, Volume Two presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. The book provides over views and case studies of advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing, and suitable data analytics useful for clinical diagnosis and research applications. The application of neural network, artificial intelligence and machine learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume One: Neural Networks in Oncology Imaging covers lung cancer, prostate cancer, and bladder cancer. Volume Two: Neural Networks in Brain Disorders and Other Diseases covers autism spectrum disorder, Alzheimer's disease, attention deficit hyperactivity disorder, hypertension, and other diseases. Written by experienced engineers in the field, these two volumes will help engineers, computer scientists, researchers, and clinicians understand the technology and applications of artificial neural networks.
Pervasive Cardiac and Respiratory Monitoring Devices: Model-Based Design is the first book to combine biomedical instrumentation and model-based design. As the scope is limited to cardiac and respiratory devices only, this book offers more depth of information on these devices; focusing in on signals used for home monitoring and offering additional analysis of these devices. The author offers an insight into new industry and research trends, including advances in contactless monitoring of breathing and heart rate. Each chapter presents a section on current trends. As instrumentation as a field is becoming increasingly smart, basic signal processing is also discussed. Real case-studies for each modelling approach are used, primarily covering blood pressure, ECG and radar-based devices. This title is ideal for teaching and supporting learning as it is written in an accessible style and a solutions manual for the problem sets is provided. It will be useful to 4th year undergraduate students, graduate/masters/PhD students, early career researchers and professionals working on an interdisciplinary project; as it introduces the field and provides real world applications. For engineers this book solves the problem of how to assess and calibrate a medical device to ensure the data collected is trustworthy. For students, this book allows for trying concepts and circuits via simulations and learning modeling techniques. Students will learn concepts from this book and be ready to design bioinstrumentations devices based on specifications/requirements.
This book introduces zero-effort technologies (ZETs), an emerging class of technologies that require little or no effort from the people who use them. ZETs use advanced computing techniques, such as computer vision, sensor fusion, decision-making and planning, machine learning, and the Internet of Things to autonomously perform the collection, analysis, and application of data about the user and/or his/her context. This book begins with an overview of ZETs, then presents concepts related to their development, including pervasive intelligent technologies and environments, design principles, and considerations regarding use. The book discusses select examples of the latest in ZET development before concluding with thoughts regarding future directions of the field.
The knee meniscus was once thought to be a vestigial tissue, but is now known to be instrumental in imparting stability, shock absorption, load transmission, and stress distribution within the knee joint. Unfortunately, most damage to the meniscus cannot be effectively healed by the body. Meniscus tissue engineering offers a possible solution to this problem by striving to create replacement tissue that may be implanted into a defect site. With a strong focus on structure-function relationships, this book details the essential anatomical, biochemical, and mechanical aspects of this versatile tissue and reviews current meniscus tissue engineering strategies and repair techniques. We have written this text such that undergraduate students, graduate students, and researchers will find it useful as a first foray into tissue engineering, a cohesive study of the meniscus, or a reference for meniscus engineering specifications. Table of Contents: Structure-Function Relationships of the Knee Meniscus / Pathophysiology and the Need for Tissue Engineering / Tissue Engineering of the Knee Meniscus / Current Therapies and Future Directions
The temporomandibular joint (TMJ) is a site of intense morbidity for millions of people, especially young, pre-menopausal women. Central to TMJ afflictions are the cartilaginous tissues of the TMJ, especially those of the disc and condylar cartilage, which play crucial roles in normal function of this unusual joint. Damage or disease to these tissues significantly impacts a patient's quality of life by making common activities such as talking and eating difficult and painful. Unfortunately, these tissues have limited ability to heal, necessitating the development of treatments for repair or replacement. The burgeoning field of tissue engineering holds promise that replacement tissues can be constructed in the laboratory to recapitulate the functional requirements of native tissues. This book outlines the biomechanical, biochemical, and anatomical characteristics of the disc and condylar cartilage, and also provides a historical perspective of past and current TMJ treatments and previous tissue engineering efforts. This book was written to serve as a reference for researchers seeking to learn about the TMJ, for undergraduate and graduate level courses, and as a compendium of TMJ tissue engineering design criteria. Table of Contents: The Temporomandibular Joint / Fibrocartilage of the TMJ Disc / Cartilage of the Mandibular Condyle / Tissue Engineering of the Disc / Tissue Engineering of the Mandibular Condyle / Current Perspectives
Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks
Cartilage injuries in children and adolescents are increasingly observed, with roughly 20% of knee injuries in adolescents requiring surgery. In the US alone, costs of osteoarthritis (OA) are in excess of $65 billion per year (both medical costs and lost wages). Comorbidities are common with OA and are also costly to manage. Articular cartilage's low friction and high capacity to bear load makes it critical in the movement of one bone against another, and its lack of a sustained natural healing response has necessitated a plethora of therapies. Tissue engineering is an emerging technology at the threshold of translation to clinical use. Replacement cartilage can be constructed in the laboratory to recapitulate the functional requirements of native tissues. This book outlines the biomechanical and biochemical characteristics of articular cartilage in both normal and pathological states, through development and aging. It also provides a historical perspective of past and current cartilage treatments and previous tissue engineering efforts. Methods and standards for evaluating the function of engineered tissues are discussed, and current cartilage products are presented with an analysis on the United States Food and Drug Administration regulatory pathways that products must follow to market. This book was written to serve as a reference for researchers seeking to learn about articular cartilage, for undergraduate and graduate level courses, and as a compendium of articular cartilage tissue engineering design criteria. Table of Contents: Hyaline Articular Cartilage / Cartilage Aging and Pathology / In Vitro / Bioreactors / Future Directions
This book looks at how AgeTech can support the autonomy and independence of people as they grow older. The authors challenge readers to reflect on the concepts of autonomy and independence not as absolutes but as experiences situated within older adults' social connections and environments. Eleven personas of people around the world provide the context for readers to consider the influence of culture and values on how we understand autonomy and independence and the potential role of technology-based supports. The global pandemic provides a backdrop for the unprecedentedly rapid adoption of AgeTech, such as information and communication technologies or mobile applications that benefit older adults. Each persona in the book demonstrates the opportunity for AgeTech to facilitate autonomy and independence in supporting one's identity, decision making, advance care planning, self care, health management, economic and social participation, enjoyment and self fulfillment and mobility in the community. The book features AgeTech from around the world to provide examples of commercially available products as well as research and development within the field. Despite the promise of AgeTech, the book highlights the "e;digital divide,"e; where some older people experience inadequate access to technology due to their geographic location, socio-economic status, and age. This book is accessible and relevant to everyday readers. Older adults will recognize themselves or peers in the personas and may glean insight from the solutions. Care partners and service providers will identify with the challenges of the personas. AgeTech entrepreneurs, especially "e;seniorpreneurs,"e; will appreciate that their endeavours represent a growing trend. Researchers will be reminded that the most important research questions are those that will enhance the quality of life of older adults and their sense of autonomy and independence, or relational autonomy and interdependence.
The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabar masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.
Architectural distortion is an important and early sign of breast cancer, but because of its subtlety, it is a common cause of false-negative findings on screening mammograms. Screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. This book presents image processing and pattern recognition techniques to detect architectural distortion in prior mammograms of interval-cancer cases. The methods are based upon Gabor filters, phase portrait analysis, procedures for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase-portrait analysis, 4,224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' texture energy measures, and Haralick's 14 texture features were computed. The areas under the receiver operating characteristic (ROC) curves obtained using the features selected by stepwise logistic regression and the leave-one-image-out method are 0.77 with the Bayesian classifier, 0.76 with Fisher linear discriminant analysis, and 0.79 with a neural network classifier. Free-response ROC analysis indicated sensitivities of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per image, respectively, with the Bayesian classifier and the leave-one-image-out method. The present study has demonstrated the ability to detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis, on the average, for interval-cancer cases, with a sensitivity of 0.8 at 5.7 FP/image. The presented computer-aided detection techniques, dedicated to accurate detection and localization of architectural distortion, could lead to efficient detection of early and subtle signs of breast cancer at pre-mass-formation stages. Table of Contents: Introduction / Detection of Early Signs of Breast Cancer / Detection and Analysis of Oriented Patterns / Detection of Potential Sites of Architectural Distortion / Experimental Set Up and Datasets / Feature Selection and Pattern Classification / Analysis of Oriented Patterns Related to Architectural Distortion / Detection of Architectural Distortion in Prior Mammograms / Concluding Remarks
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost.However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells.Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "e;Armillary Sphere"e; was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis.Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.