Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This monograph presents an up-to-date panorama of the different techniques and results in the large field of renorming in Banach spaces and its applications. The reader will find a self-contained exposition of the basics on convexity and differentiability, the classical results in building equivalent norms with useful properties, and the evolution of the subject from its origin to the present days. Emphasis is done on the main ideas and their connections. The book covers several goals. First, a substantial part of it can be used as a text for graduate and other advanced courses in the geometry of Banach spaces, presenting results together with proofs, remarks and developments in a structured form. Second, a large collection of recent contributions shows the actual landscape of the field, helping the reader to access the vast existing literature, with hints of proofs and relationships among the different subtopics. Third, it can be used as a reference thanks to comprehensive lists and detailed indices that may lead to expected or unexpected information. Both specialists and newcomers to the field will find this book appealing, since its content is presented in such a way that ready-to-use results may be accessed without going into the details. This flexible approach, from the in-depth reading of a proof to the search for a useful result, together with the fact that recent results are collected here for the first time in book form, extends throughout the book. Open problems and discussions are included, encouraging the advancement of this active area of research.
This book offers the first comprehensive presentation of measure-valued solutions for nonlinear deterministic and stochastic evolution equations on infinite dimensional Banach spaces. Unlike traditional solutions, measure-valued solutions allow for a much broader class of abstract evolution equations to be addressed, providing a broader approach.The book presents extensive results on the existence of measure-valued solutions for differential equations that have no solutions in the usual sense. It covers a range of topics, including evolution equations with continuous/discontinuous vector fields, neutral evolution equations subject to vector measures as impulsive forces, stochastic evolution equations, and optimal control of evolution equations. The optimal control problems considered cover the existence of solutions, necessary conditions of optimality, and more, significantly complementing the existing literature.This book will be of great interest to researchers in functional analysis, partial differential equations, dynamic systems and their optimal control, and their applications, advancing previous research and providing a foundation for further exploration of the field.
This book presents a machine-generated literature overview of quaternion integral transforms from select papers published by Springer Nature, which have been organized and introduced by the book¿s editor. Each chapter presents summaries of predefined themes and provides the reader with a basis for further exploration of the topic. As one of the experimental projects initiated by Springer Nature for AI book content generation, this book shows the latest developments in the field. It will be a useful reference for students and researchers who are interested in exploring the latest developments in quaternion integral transforms.
¿Das essential gibt Bachelor- und Masterstudierenden der Natur- und Ingenieurwissenschaften eine kompakte Einführung in die Mathematik der partiellen Differentialgleichungen. Im Fokus stehen dabei explizite Lösungsmethoden für die drei wichtigsten Grundtypen linearer partieller Differentialgleichungen: Laplacegleichung, Wärmeleitungsgleichung und Wellengleichung. Diese werden aus dem jeweiligen physikalischen Kontext motiviert. Es werden Lösungsverfahren für eine Reihe von typischen Anfangs- und Randwertaufgaben vorgestellt. Die diesen zugrundeliegenden analytischen Methoden, u.a. Fourierreihen und die Fouriertransformation, werden in einem eigenen Kapitel in knapper Form zusammengefasst.
Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the eighth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on:Operational Modal & Modal Analysis ApplicationsExperimental TechniquesModal Analysis, Measurements & Parameter EstimationModal Vectors & ModelingBasics of Modal AnalysisAdditive Manufacturing & Modal Testing of Printed Parts
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades.The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations.In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed.In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed.The chapters give acomprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
This proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18¿22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory.One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.
This volume presents a completely self-contained introduction to the elaborate theory of locally compact quantum groups, bringing the reader to the frontiers of present-day research. The exposition includes a substantial amount of material on functional analysis and operator algebras, subjects which in themselves have become increasingly important with the advent of quantum information theory. In particular, the rather unfamiliar modular theory of weights plays a crucial role in the theory, due to the presence of 'Haar integrals' on locally compact quantum groups, and is thus treated quite extensivelyThe topics covered are developed independently, and each can serve either as a separate course in its own right or as part of a broader course on locally compact quantum groups. The second part of the book covers crossed products of coactions, their relation to subfactors and other types of natural products such as cocycle bicrossed products, quantum doubles and doublecrossed products. Induced corepresentations, Galois objects and deformations of coactions by cocycles are also treated. Each section is followed by a generous supply of exercises. To complete the book, an appendix is provided on topology, measure theory and complex function theory.
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data.The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.
This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader¿s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.For each notion a clear motivation is given for its study, answering the question ¿Why do we consider such objects?¿, and the theory is developed in a natural way that mirrors its historical development (e.g., ¿If there is such and such an object, then you would surely expect this one¿). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations. Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.
This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov¿s nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology.This text can be used as the basis for a graduate course, and it is also immensely suitable for independentstudy. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed.This book is also part of the Virtual Series on Symplectic Geometry.
¿This book discusses the process by which Ulam's conjecture is proved, aptly detailing how mathematical problems may be solved by systematically combining interdisciplinary theories. It presents the state-of-the-art of various research topics and methodologies in mathematics, and mathematical analysis by presenting the latest research in emerging research areas, providing motivation for further studies. The book also explores the theory of extending the domain of local isometries by introducing a generalized span.For the reader, working knowledge of topology, linear algebra, and Hilbert space theory, is essential. The basic theories of these fields are gently and logically introduced. The content of each chapter provides the necessary building blocks to understanding the proof of Ulam¿s conjecture and are summarized as follows: Chapter 1 presents the basic concepts and theorems of general topology. In Chapter 2, essential concepts and theorems in vector space, normed space, Banach space, inner product space, and Hilbert space, are introduced. Chapter 3 gives a presentation on the basics of measure theory. In Chapter 4, the properties of first- and second-order generalized spans are defined, examined, and applied to the study of the extension of isometries. Chapter 5 includes a summary of published literature on Ulam¿s conjecture; the conjecture is fully proved in Chapter 6.
De nombreux systèmes physiques, mécaniques, financiers et économiques peuvent être décrits par des modèles mathématiques qui visent à optimiser des fonctions, trouver des équilibres et effectuer des arbitrages. Souvent, la convexité des ensembles et des fonctions ainsi que les conditions de monotonie sur les systèmes d'inéquations qui régissent ces systèmes se présentent naturellement dans les modèles. C'est dans cet esprit que nous avons conçu ce livre en mettant l'accent sur une approche géométrique qui privilégie l'intuition par rapport à une approche plus analytique. Les démonstrations des résultats classiques ont été revues dans cette optique et simplifiées. De nombreux exemples d'applications sont étudiés et des exercices sont proposés.Ce livre s'adresse aux étudiants en master de mathématiques appliquées, ainsi qu'aux doctorants, chercheurs et ingénieurs souhaitant comprendre les fondements de l'analyse convexe et de la théorie des inéquations variationnelles monotones.
This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.
Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann¿s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.
Described here is Feynman's path integral approach to quantum mechanics and quantum field theory from a functional integral point of view. Therein lies the main focus of Euclidean field theory. The notion of Gaussian measure and the construction of the Wiener measure are covered. As well, the notion of classical mechanics and the Schrödinger picture of quantum mechanics are recalled. There, the equivalence to the path integral formalism is shown by deriving the quantum mechanical propagator from it. Additionally, an introduction to elements of constructive quantum field theory is provided for readers.
This volume presents the revised papers of the 14th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2020, which took place online during August 10-14, 2020. This book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in statistics, machine learning, finance, and computer graphics, offering information on the latest developments in Monte Carlo and quasi-Monte Carlo methods and their randomized versions.
This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems.The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability.The scope of the author's work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes.For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.
This book presents original research results on pseudodifferential operators.C*-algebras generated by pseudodifferential operators with piecewise smooth symbols on a smooth manifold are considered. For each algebra, all the equivalence classes of irreducible representations are listed; as a consequence, a criterion for a pseudodifferential operator to be Fredholm is stated, the topology on the spectrum is described, and a solving series is constructed.Pseudodifferential operators on manifolds with edges are introduced, their properties are considered in details, and an algebra generated by the operators is studied.An introductory chapter includes all necessary preliminaries from the theory of pseudodifferential operators and C*-algebras.
This text is the first of its kind exclusively devoted to counterexamples in operator theory and includes over 500 problems on bounded and unbounded linear operators in Hilbert spaces. This volume is geared towards graduate students studying operator theory, and the author has designated the difficulty level for each counterexample, indicating which ones are also suitable for advanced undergraduate students.The first half of the book focuses on bounded linear operators, including counterexamples in the areas of operator topologies, matrices of bounded operators, square roots, the spectrum, operator exponentials, and non-normal operators. The second part of the book is devoted to unbounded linear operators in areas such as closedness and closability, self-adjointness, normality, commutativity, and the spectrum, concluding with a chapter that features some open problems. Chapters begin with a brief "e;Basics"e; section for the readers' reference, and many of the counterexamples included are the author's original work. Counterexamples in Operator Theory can be used by students in graduate courses on operator theory and advanced matrix theory. Previous coursework in advanced linear algebra, operator theory, and functional analysis is assumed. Researchers, quantum physicists, and undergraduate students studying functional analysis and operator theory will also find this book to be a useful reference.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
Wavelets haben in den letzten zwölf Jahren eine stürmische Entwicklung in Forschung und Anwendungen genommen. Wie so oft war der Anfang ein ingenieursmäßiger Zu gang zu einem Anwendungsproblem, das mit den vorhandenen Mitteln nicht zufrie denstellend lösbar war. Im Falle der Wavelets war das Versagen klassischer Methoden zur Analyse geophysikalischer Daten Anlaß, "neue" Analyseverfahren zu entwickeln. Auch hier ist dann mit der Zeit deutlich geworden, daß die Wurzeln der Methode in mathematische Arbeiten hineinreichen. Dieses Zusammenspiel von Anwendungen und mathematischer Theorie hat erst den Erfolg gebracht. Ein Nachteil der Fourier-Transformation ist das Fehlen einer Lokalisierungseigenschaft: ändert sich ein Signal an einer Stelle, so ändert sich die Transformierte überall, ohne daß durch bloßes Hinschauen die Stelle der Änderung gefunden werden kann. Der Grund ist natürlich die Verwendung der immer periodisch schwingenden trigonome trischen Funktionen. Verwendet man dagegen räumlich begrenzte Wavelets, "kleine Wellen" oder "Wellchen" sind Versuche einer Übersetzung ins Deutsche, so kann durch das Verschieben eine Lokalisierung und durch Stauchen eine Frequenzauflösung an der entsprechenden Stelle erreicht werden. Schon früh bei der Entwicklung der Ondelettes, wie die Wavelets in ihrem Ursprungs land Frankreich genannt werden, sind sowohl die kontinuierliche als auch die diskrete Transformation untersucht worden. Die kontinuierliche Wavelet-Transformation kann als eine Phasenraumdarstellung in terpretiert werden. Ihre Filter- und Approximationseigenschaften werden untersucht.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.