Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Inverse limits with set-valued functions are quickly becoming a popular topic of research due to their potential applications in dynamical systems and economics. This brief provides a concise introduction dedicated specifically to such inverse limits. The theory is presented along with detailed examples which form the distinguishing feature of this work. The major differences between the theory of inverse limits with mappings and the theory with set-valued functions are featured prominently in this book in a positive light. The reader is assumed to have taken a senior level course in analysis and a basic course in topology. Advanced undergraduate and graduate students, and researchers working in this area will find this brief useful. ¿
The present volume contains the proceedings of the workshop on "e;Minimax Theory and Applications"e; that was held during the week 30 September - 6 October 1996 at the "e;G. Stampacchia"e; International School of Mathematics of the "e;E. Majorana"e; Centre for Scientific Cul- ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y , one tries to find conditions that ensure the validity of the equality sup inf f(x,y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu- tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "e;switch quantifiers"e; arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject.
This is the eighth volume in the series "e;Mathematics in Industrial Prob- lems."e; The motivation for these volumes is to foster interaction between Industry and Mathematics at the "e;grass roots level"e;; that is, at the level of specific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufacture of new or improved products. At the same time, these prob- lems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA Seminar on Industrial Problems. The book is based on the seminar presentations and on questions raised in subsequent discussions. Each chapter is devoted to one of the talks and is self-contained. The chapters usually provide references to the mathematical literature and a list of open problems that are of interest to industrial scientists. For some problems, a partial solution is indicated briefly. The last chapter of the book contains a short description of solutions to some of the problems raised in the previous volume, as well as references to papers in which such solutions have been published.
The problem of "e;Shortest Connectivity"e;, which is discussed here, has a long and convoluted history. Many scientists from many fields as well as laymen have stepped on its stage. Usually, the problem is known as Steiner's Problem and it can be described more precisely in the following way: Given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. Steiner's Problem seems disarmingly simple, but it is rich with possibilities and difficulties, even in the simplest case, the Euclidean plane. This is one of the reasons that an enormous volume of literature has been published, starting in 1 the seventeenth century and continuing until today. The difficulty is that we look for the shortest network overall. Minimum span- ning networks have been well-studied and solved eompletely in the case where only the given points must be connected. The novelty of Steiner's Problem is that new points, the Steiner points, may be introduced so that an intercon- necting network of all these points will be shorter. This also shows that it is impossible to solve the problem with combinatorial and geometric methods alone.
In science, engineering and economics, decision problems are frequently modelled by optimizing the value of a (primary) objective function under stated feasibility constraints. In many cases of practical relevance, the optimization problem structure does not warrant the global optimality of local solutions; hence, it is natural to search for the globally best solution(s). Global Optimization in Action provides a comprehensive discussion of adaptive partition strategies to solve global optimization problems under very general structural requirements. A unified approach to numerous known algorithms makes possible straightforward generalizations and extensions, leading to efficient computer-based implementations. A considerable part of the book is devoted to applications, including some generic problems from numerical analysis, and several case studies in environmental systems analysis and management. The book is essentially self-contained and is based on the author's research, in cooperation (on applications) with a number of colleagues. Audience: Professors, students, researchers and other professionals in the fields of operations research, management science, industrial and applied mathematics, computer science, engineering, economics and the environmental sciences.
The theory of convex optimization has been constantly developing over the past 30 years. Most recently, many researchers have been studying more complicated classes of problems that still can be studied by means of convex analysis, so-called "e;anticonvex"e; and "e;convex-anticonvex"e; optimizaton problems. This manuscript contains an exhaustive presentation of the duality for these classes of problems and some of its generalization in the framework of abstract convexity. This manuscript will be of great interest for experts in this and related fields.
Why would anyone bid $3. 25 in an auction where the prize is a single dollar bill? Can one "e;game"e; explain the apparent irrationality behind both the arms race of the 1980s and the libretto of Puccini's opera Tosca? How can one calculation suggest the president has 4 percent of the power in the United States federal system while another s- gests that he or she controls 77 percent? Is democracy (in the sense of re?ecting the will of the people) impossible? Questionslikethesequitesurprisinglyprovideaveryniceforumfor some fundamental mathematical activities: symbolic representation and manipulation, model-theoretic analysis, quantitative represen- tionandcalculation,anddeductionasembodiedinthepresentationof mathematical proof as convincing argument. We believe that an ex- sure to aspects of mathematics such as these should be an integral part of a liberal arts education. Our hope is that this book will serve as a text for freshman-sophomore level courses, aimed primarily at students in the humanities and social sciences, that will provide this sort of exposure. A number of colleges and universities already have interdisciplinary freshman seminars where this could take place. Most mathematics texts for nonscience majors try to show that mathematics can be applied to many different disciplines. A student's viii PREFACE interest in a particular application, however, often depends on his or hergeneralinterestintheareainwhichtheapplicationistakingplace. Our experience at Union College and Williams College has been that there is a real advantage in having students enter the course knowing that virtually all the applications will focus on a single discipline-in this case, political science.
Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac- complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu- ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh- bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func- tion. Since f(y) ~ h(y) for ally, the second role is global. In contrast to a local approximation, the function h will be called a global affine support.
For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.