Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Das Verständnis der Physik von Festkörpern hat im letzten Jahrhundert enorme Fortschritte gemacht und unser tägliches Leben in vielerlei Hinsicht revolutioniert. Diese Entwicklung geht weiter, und es besteht kaum ein Zweifel daran, dass die moderne Festkörperphysik notwendig ist, um einige der Herausforderungen zu bewältigen, denen wir uns heute gegenübersehen. In seiner 6., überarbeiteten Auflage deckt das Werk ein breites Spektrum physikalischer Phänomene ab, die in Festkörpern auftreten, und erörtert grundlegende Konzepte zu deren Beschreibung. Das Material ist so ausgewählt, dass alle relevanten aktuellen Teilgebiete einbezogen werden und zusammen einen umfassenden Überblick bieten. Eine Besonderheit dieses Lehrbuches ist, dass die Physik ungeordneter Festkörper, die üblicherweise meist nur sehr kurz oder gar nicht dargestellt wird, konsequent in die Behandlung des Stoffes einfließt und die Physik der idealen Kristalle ergänzt. Ungeordnete Festkörper sind in unserem täglichen Leben allgegenwärtig und spielen in zahlreichen technischen Anwendungen eine wichtige Rolle. Das Lehrbuch richtet sich an Studierende, die Festkörperphysik auf einführendem und fortgeschrittenem Vorlesungsniveau studieren wollen.
This book provides information on the characteristics, strategies and applications of layered materials. It sheds light on layerdness-dependent properties of Van der Waals solids for potential applications. The properties of various layered materials prepared using different experimental strategies are described. Further, the first-principles calculations are given to devise a strategy to investigate layeredness in materials. The structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport characteristics of the layered materials are elaborated in detail. This book provides an updated source of information on layered materials for students, researchers, and professionals.
This book is based on a course of lectures aimed at undergraduate and graduate students studying materials science and welding at the E.O. Paton Institute of Materials Science and Welding National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute." The book is divided into four parts, each focusing on various aspects of magnetic solitons in ferromagnetic nanosystems.The first two parts of the book cover the quantum and thermodynamic properties of uniaxial ferromagnetic films with strong magnetic anisotropy and cylindrical nanowires made of different chemical compositions (ferrite-garnet, iron, nickel). These properties are related to the presence of "kink" solitons, which are vertical Bloch lines (BLs) and domain walls (DWs) of transverse type, respectively.The third part of the book discusses the effect of thermal motion of transverse-type DWs on the magnetocaloric effect in cylindrical iron and nickel nanowires. The fourth part of the book explores the conditions that lead to structural transitions between different types of DWs, including transverse, asymmetric, and DWs with a Bloch point (point soliton).Each part of the book is summarized at the end, highlighting the main results presented. Overall, the book is designed to provide students with a comprehensive understanding of magnetic solitons in ferromagnetic nanosystems and their associated quantum, thermodynamic, and structural properties.
This book gathers selected papers from the 28th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2022 (ICEC28-ICMC 2022), held virtually in Hangzhou, China on 25-29 April 2022, due to COVID-19 pandemic. Highlighting the latest findings on cryogenic engineering and cryogenic materials, it covers topics including: large-scale cryogenic components, processes and systems for refrigeration, separation, and liquefaction of cryogenic fluids, small-scale cryocoolers, cryogenic space applications, thermal insulation, thermal-physical properties of cryogenic fluids and materials, superconducting materials, devices, systems and applications, etc. The book offers valuable information and insights for academic researchers, engineers in the industry, and operators in the cryogenic field.
This book will provide readers with a good overview of some of the most recent advances in the field of detector technology for gamma-ray imaging, especially as it pertains to new applications. There will be a good mixture of general chapters in both technology and applications in medical imaging and industrial testing. The book will have an in-depth review of the research topics from world-leading specialists in the field. The conversion of the gamma-ray signal into analog/digital value will be covered in some chapters. Some would also provide a review of CMOS chips for gamma-ray image sensors.
This book describes analytical instruments widely used to characterize the nanostructured materials. It provides information about how to assess material quality, defects, the state of surfaces and interfaces, element distributions, strain, lattice distortion, and electro-optical properties of materials and devices. The information provided by this book can be used as a back-up for material processing, material design and debugging of device performance. The basic principles and methodology of each analysis technique is described in separate chapters, adding historic perspectives and recent developments. The data analysis, from simple to advanced level, is introduced by numerous examples, mostly taken from the authors' fields of research; semiconductor materials, metals and oxides. The book serves as a valuable guide for scientists and students working in materials science, physics, and engineering, who wish to become acquainted with the most important analytical techniques for nanomaterials.
This book provides information on thermal energy storage systems incorporating phase change materials (PCMs) which are widely preferred owing to their immense energy storage capacity. The thermal energy storage (TES) potential of PCMs has been deeply explored for a wide range of applications, including solar/electrothermal energy storage, waste heat storage, and utilization, building energy-saving, and thermal regulations. The inherent shortcomings like leakage during phase transition and poor thermal conductivity hamper their extensive usage. Nevertheless, it has been addressed by their shape stabilization with porous materials and dispersing highly conductive nanoparticles. Nanoparticles suspended in traditional phase change materials enhance the thermal conductivity. The addition of these nanoparticles to the conventional PCM enhances the storage. In this book, the history of Nano Enhanced Phase Change Materials (NEPCM), preparation techniques, properties, theoretical modeling and correlations, and the effect of all these factors on the potential applications such as: solar energy, electronics cooling, heat exchangers, building, battery thermal management, thermal energy storage are discussed in detail. Future challenges and future work scope have been included. The information from this book can enable the readers to come up with novel techniques, resolve existing research limitations, and come up with novel NEPCM, that can be implemented for various applications.
"The quantum Hall effect (QHE) is a fundamental phenomenon that occurs in a two-dimensional electron gas (2DEG) at low temperature and in the presence of a strong magnetic field. It has various applications in the fields like metrology and topological quantum computers. It also provides an extremely precise and independent determination of the fine-structure constant-a quantity of fundamental importance in quantum electrodynamics. This book attempts to present concepts of QHE to undergraduate and graduate students, post-doctoral researchers, and teachers taking advanced courses on condensed matter physics. The author has tried to integrate all the important concepts of QHE like graphene, the connection between topology and condensed matter physics, the prospects of next-generation storage devices based on the manipulation of spins (spintronic) and present them in a lucid manner. It offers the advantage of providing a pedagogical presentation to help students with some intermediate steps in derivation. The book starts with an introduction to the experimental discovery of the QHE that segues into the basics of 2DEG in a magnetic field. The physics of the Landau levels, their properties, and their relevance to the integer QHE are discussed. The importance of conduction and its connection to topological insulators is also emphasised. At a pedagogical level, concepts like linear response theory, Kubo formula, and topological invariance are explained and their relations to the understanding of QHE, graphene, its symmetries and its relevance as a quantum Hall insulator are also covered. It ends with an explanation of the role of interparticle interactions to explain fractional QHE with the help of topics such as the Laughlin wave function, fractional charge and statistics, and non-abelian anyons"--
This book introduces characterizations of hyperordered structures using latest quantum beam technologies, the advanced theoretical methods for understanding the roles of the structures, and the state-of-the-arts materials containing the structures. In this book, the authors focus on the importance of defect complexes to improve functionality of crystals and that of orders of network structures to improve functionality of glass materials. These features can be regarded as interphases between perfect crystals and perfect amorphous, and they are the key factor for the evolution of materials science to a new dimension. The authors call such interphases "hyperordered structures" in this book. This is the first book that comprehensively summarizes glass science, defect science, and quantum beam science. It is valuable not only for active researchers in industry and academia but also graduate students.
This book explores the potential of magnetic superconductors in storage systems, specifically focusing on superconducting magnetic energy storage (SMES) systems and using the Spanish electricity system, controlled by Red Eléctrica de España (REE), as an example.The book provides a comprehensive analysis of the economic costs associated with the manufacture and maintenance of SMES systems, as well as a regulatory analysis for their implementation in the complex Spanish electrical system. The analysis also compares this system with the regulations of other countries, providing a comprehensive case study.The book examines the possible economic and environmental benefits of using magnetic superconductors in electrical systems and provides a technical study of the use of these systems in hybrid storage systems that complement each other to optimize network performance. The study is conducted from the perspective of new distribution networks, distributed generation, and the concepts of the smart city. The book also explores potential applications and developments, such as electric vehicles.Overall, this book offers an insightful and comprehensive analysis of the potential of magnetic superconductors in storage systems. It will be an invaluable resource for researchers, engineers, and policymakers interested in the future of energy storage systems
"Provides a broad and accessible introduction to quantum field theory and the Standard Model of particle physics, adopting a distinctive pedagogical approach with clear intuitive explanations to complement the mathematical exposition. Includes topics of current research both within and beyond the Standard Model"--
Our current concept of matter, one of scientific research¿s greatest successes, represents a long journey, from questions posed during the birth of philosophy in Ancient Greece to recent advances in physics and chemistry, including Quantum Physics. This book outlines that journey. The book has three parts, each detailing a phase of the journey. The first saw the development of a conception based on "classical" physics; the second saw the construction of the "old" quantum theory attempting to explain the mysterious properties of matter, resulting in formulation of the "new" quantum theory; the third saw the formation of the modern conception of matter, based on quantum mechanics. Along the way, various topics are discussed, including: rediscovery and appropriation of antiquity by Western culture in the modern era; the subsequent revision process in the 16th and 17th centuries and the new experiments and theories of the 18th; attempts to understand the mysterious properties of matterthat could not be explained by classical physics; the first quantization hypotheses; discovery of new purely "quantum-mechanical" properties of matter; and the ultimate clarification of atomic structure. This book is aimed at anyone who wants a clear picture of how we arrived at the modern conception of matter.
This book offers an interdisciplinary theoretical approach based on non-equilibrium statistical thermodynamics and control theory for mathematically modeling shock-induced out-of-equilibrium processes in condensed matter. The book comprises two parts. The first half of the book establishes the theoretical approach, reviewing fundamentals of non-equilibrium statistical thermodynamics and control theory of adaptive systems. The latter half applies the presented approach to a problem on shock-induced plane wave propagation in condensed matter. The result successfully reproduces the observed feature of waveform propagation in experiments, which conventional continuous mechanics cannot access. Further, the consequent stress-strain relationships derived with relaxation and inertia effect in elastic-plastic transition determines material properties in transient regimes.
This book presents a complementary perspective to Schrodinger theory of electrons in an electromagnetic field, one that does not appear in any text on quantum mechanics. The perspective, derived from Schrodinger theory, is that of the individual electron in the sea of electrons via its temporal and stationary-state equations of motion - the 'Quantal Newtonian' Second and First Laws. The Laws are in terms of 'classical' fields experienced by each electron, the sources of the fields being quantum-mechanical expectation values of Hermitian operators taken with respect to the wave function. Each electron experiences the external field, and internal fields representative of properties of the system, and a field descriptive of its response. The energies are obtained in terms of the fields. The 'Quantal Newtonian' Laws lead to physical insights, and new properties of the electronic system are revealed. New mathematical understandings of Schrodinger theory emerge which show the equation to be intrinsically self-consistent. Another complimentary perspective to Schrdinger theory is its manifestation as a local effective potential theory described via Quantal Density Functional theory. This description too is in terms of 'classical' fields and quantal sources. The theory provides a rigorous physical explanation of the mapping from the interacting system to the local potential theory equivalent.The complementary perspective to stationary ground state Schrdinger theory founded in the theorems of Hohenberg and Kohn, their extension to the presence of a magnetic field and to the temporal domain - Modern Density Functional Theory -- is also described. The new perspectives are elucidated by application to analytically solvable interacting systems. These solutions and other relevant wave function properties are derived.
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
Lignin, found in the cell walls of trees and plants, is the second-most naturally abundant biopolymer. It is composed of alkyl-aromatic polymer units. This book describes the composition and structure of lignin, strategies for its chemical modification, and studies of biopolymer lignin. It also discusses the synthesis and characterization of lignin, methods for degradation, applications in various materials, and prospects for further development. Other topics covered include the role of lignin in thermosetting and thermoplastic materials and its technical and economic potential for generating green biofuel as an energy source for industrial plants and in the manufacture of fine chemicals.
Non-collinear spin textures have attracted significant attention due to their topological nature, emergent electromagnetic properties, and potential spintronic and magnonic device applications. This book explores the physical properties of distinct spin textures in D2d compounds. The main goals of the work are (a) discovering new spin textures in D2d Heusler compounds and studying their detailed properties to enrich the field of non-collinear magnetism (b) optimizing the nano-track geometry and generating isolated and single chains of nano-objects that will establish new hallmarks for technological applications (c) studying the stability of spin textures with magnetic fields and temperatures and finding a way to observe the striking behavior of spin textures near the specimen edges. The first few chapters provide a brief overview of spin textures such as Bloch and Neel skyrmions. In the experimental methods section, the author shows how to identify the single-crystalline grains of a polycrystalline sample, how to make single-crystalline thin specimens and nano-tracks, and then provides explicit descriptions of different imaging techniques performed on a transmission electron microscope. This part will be valuable for beginners wishing to conduct research in experimental nano-magnetism and transmission electron microscope imaging. The core results of the book are presented in four chapters, describing the discovery of several new and unanticipated spin textures, namely square-shaped antiskyrmions, elliptical Bloch skyrmions, fractional antiskyrmions, fractional Bloch skyrmions and elongated (anti)skyrmions in a single D2d Heusler compound. It is shown that these textures can be understood by a combination of dipole-dipole interactions and a chiral vector exchange that makes it possible to stabilize various spin textures even in the same compound. The D2d compounds are the first non-centrosymmetric systems shown to host several co-existing non-collinear spin textures.
Um das mechanische Verhalten von Werkstoffen einerseits besser zu verstehen und andererseits gezielt verbessern zu können, müssen die Prozesse und Mechanismen, die bei mechanischer Belastung im Material in Abhängigkeit von den Materialstrukturen ablaufen (die sog. ¿Struktur- Eigenschafts-Korrelationen¿), bekannt sein. Grundlegend sind die Prozesse auf mikro- und nanoskopischer Größenebene, d.h. im Größenbereich von 0,1 mm bis herab zu 0,1 nm (d.h. sog. Mikro- und Nanomechanik). Der Autor charakterisiert anschaulich diese mikro- und nanomechanischen Mechanismen mit aussagefähigen Schemata und Bildern auf der Grundlage hauptsächlich von elektronenmikroskopischen Analysen. Neben allgemeingültigen Prozessen und Mechanismen wird auch auf materialspezifische Effekte (z.B. Crazes, Chevrons, Dünnschichtfließen) eingegangen.Die Produktfamilie WissensExpress bietet Ihnen Lehr- und Lernbücher in kompakter Form. Die Bücher liefern schnell und verständlich fundiertes Wissen.
This textbook covers the physics of engineering materials and the latest technologies used in modern engineering projects. It has been designed for use as a reference book and course material for undergraduate engineering students. The book was born out of the need for a comprehensive, balanced, and up-to-date guide for teaching physics to beginning undergraduate engineering students and creating examination papers for technical boards and institutes. The text is divided into ten chapters, each with its specific objectives and features. The topics covered include the classification of engineering materials, atomic structure, electrical and magnetic behavior of solids, quantum mechanics, laser technology, nanomaterials, and sustainable development.Authored by a physicist with over 40 years of teaching experience, this richly-illustrated textbook features an abundance of self-assessment questions, solved examples, and a variety of chapter-end questions with detailed answers. The textbook starts from the very basics and is developed to the desired level, thus making it ideal as standalone course material.
This book is based on the 18 tutorials presented during the 30th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication via wireless, wireline, or optical links. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
This book provides a concise introduction to additive manufacturing, accessible to anyone with a basic background in engineering and materials science. The author explains additive manufacturing (AM) in terms of advantages and disadvantages and gives a concise list of advantages and disadvantages, enabling readers to understand AM in relation to other techniques. Additionally, this book clarifies various contradictions with the help of numerous examples.This book:Offers readers a unique, accelerated learning tool, revealing the subtleties of Additive ManufacturingDescribes a concept for refabrication in the context of additive manufacturing, providing new insight into repair and refurbishmentDiscusses additive manufacturing not only as a design tool, but also a production tool in the context of mass-production
Scientific problems have an internal "beauty", called, referred to, precisely speaking, as their "symmetry". The symmetry arises, often, from the fact that the scientific problem refers to an object (a molecule, a crystal) and the object itself has some "symmetry" elements, but in more abstract situations, such as those arising in particle physics and quantum technologies, symmetry is often the only known (and relevant!) fact about the problem. The scope of these Lecture Notes is to educate how to recognize the symmetry of a scientific problem and how to use symmetry to understand, manipulate and, finally, solve it. The principle guiding these Lecture Notes is that "learning by doing" is the only way that young students can later become productive in science, business and industry. The lecture Notes have, essentially, two components. The first one reports the content of a set of lectures, held at ETH Zurich at the master and PhD level, frequented mainly by students from the department of Physics, Chemistry and Material Science. The lectures were accompanied by a set of student projects on various scientific subjects related to symmetry. These projects ended with a manuscript, worked out by the students themselves and edited into the second component of these Lecture Notes.
This book presents advances in the field of rare-earth (R) ¿ transition metal (M) ¿ boron compounds with extensive references. Since titanium and scandium do not form compounds with rare-earths, the Sc/Ti-M-B series are additionally presented. In each chapter the crystal structures, the complex physical properties as determined from neutron diffraction, magnetic measurements, resonance studies, transport properties and band structure calculations are critical analyzed. The models used in describing the experimental evidence are also presented. Tables with the main properties of the R-M-B compounds are given and representative data are illustrated in figures. In this way, the book provides state-of-the art knowledge and a valuable analysis of up-to-date results in the field. The technical applications, as permanent magnets, thermoelectric and magnetocaloric devices, hydrogen storage are also highlighted along with the authors insights into future directions in the field. The book is ofinterest for scientists involved in the development of the field as well as those working in the technical uses of rare-earth compounds.
This book gives a comprehensive account of modern x-ray science, based on the use of synchrotron radiation and x-ray-free electron lasers (XFELs). It emphasizes the new capabilities of XFELs which extend the study of matter to the intrinsic timescales associated with the motion of atoms and chemical transformations and give birth to the new field of non-linear x-ray science. Starting with the historical understanding of the puzzling nature of light, it covers the modern description of the creation, properties, and detection of x-rays within quantum optics. It then presents the formulation of the interactions of x-rays with atomic matter, both, from semi-classical and first-principles quantum points of view. The fundamental x-ray processes and techniques, absorption, emission, Thomson, and resonant scattering (REXS and RIXS) are reviewed with emphasis on simple intuitive pictures that are illustrated by experimental results. Concepts of x-ray imaging and diffractive imaging of atomic and nano structures are discussed, and the quantum optics formulation of diffraction is presented that reveals the remarkable quantum substructure of light. The unique power of x-rays in providing atom and chemical-bond specific information and separating charge and spin phenomena through x-ray polarization (dichroism) effects are highlighted. The book concludes with the discussion of many-photon or non-linear x-ray phenomena encountered with XFELs, such as stimulated emission and x-ray transparency.
This book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.
Das 2-bändige Lehrbuchs vermittelt anschaulich und verständlich quanten- und festkörpertheoretische Kenntnisse und Fertigkeiten und richtet sich an Studierende der Natur- und Ingenieurswissenschaften. __Band 1 Quantenmechanik. Im ersten Teil werden ausführlich sowohl Handwerkszeug als auch Methoden erläutert, um typische Eigenwertprobleme kleinster Systeme zu lösen, wie denen des Elektrons im Kasten und des H-Atoms. Wechselwirkt Strahlung mit einem Quantensystem, kann dieses mit Schwingungen oder Rotationen antworten. Auch das Phänomen des Tunneleffekt ist nun einer Beschreibung zugänglich. Dass bei der Messung einer Eigenschaft nur ein Mittelwert, bei der einer anderen dagegen ein scharfer Wert beobachtet wird, kann nun mit absoluter Sicherheit prognostiziert werden. Der Übergang von kleinsten Systemen zu größeren atomaren oder molekularen Einheiten wie dem He-Atom, dem H2+-Ion oder dem Benzol gelingt mit Näherungsverfahren, die zufriedenstellende Übereinstimmung mit den Experimenten ermöglichen, wenn auch mit hohem Rechenaufwand. In den etwa zweihundert Aufgaben werden in den Lösungen diese Methoden ausführlich erörtert. __Band 2. Festkörperphysik. Der zweiteTeil beginnt mit der Betrachtung der einzelnen Festkörperklassen und weitet den Bogen mit der thermischen Energie und optischen Phänomenen von Isolatoren. Der Schwerpunkt liegt jedoch auf Metallen und Halbleitern, wobei mit dem Modell Freier Elektronen sowohl optische wie magnetische Effekte bis hin zum Ferromagnetismus umfassend be-schrieben werden können. Bei elektrischen Eigenschaften dagegen ist eine Ausweitung dieses Modells erforderlich, das damit aber das Fenster zu den Halbleitern öffnet, deren Eigenschaften sowohl im Volumen wie an Grenzflächen untersucht werden, so dass damit ein Verständnis von Halbleiter-bauelementen ermöglicht wird, hier dargelegt an Dioden. Viele in den über hundert Aufgaben betrachteten Fragestellungen, die von ausführlichen Lösungswe-gen begleitet sind, zeigen auf, wie weitreichend die Anwendungen sind, die sich mit der erworbenen Fertigkeit in diesem Calculus erschließen lassen.
Advances in Heat Transfer, Volume 56, presents the latest in a serial that highlights new advances in the field, with this updated volume presenting interesting chapters written by an international board of authors.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.