Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Electronic state of every solid is basically classified into two categories according to its electrical responses: insulator or metal. A textbook of modern solid state physics explains that shape of a Fermi surface plays a key role in most physical properties in metals. One of the well-established experimental methods to detect a Fermi surface is measurement of quantum oscillations that is a periodic response of physical quantities with respect to external magnetic fields. As insulators do not host Fermi surface, it is believed that they do not exhibit any quantum oscillations.This book presents a comprehensive review of recent observations of quantum oscillations in the Kondo insulators, SmB6 and YbB12, and discusses how the observations are demonstrated by a newly proposed mechanism where emergent charge-neutral fermions exhibit quantum oscillations instead of bare electrons. It also focuses on topological properties of Kondo insulators, and demonstrates that YbB12 hosts asurface metallic conduction owing to its non-trivial band structure. Further it presents the experiments of specific heat and thermal conductivity in YbB12 down to ultra-low temperature to discuss the possible low-energy excitations from a Fermi surface of neutral fermions. The demonstrated gapless and itinerant fermionic excitations, that is the significant contribution from charge neutral fermions, violates Wiedemann-Franz law. The discoveries point out a highly unconventional phase of quantum state¿electrically insulating but thermally metallic¿realized in the bulk of topological Kondo insulators.
This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection includes an oral history of Michael Horne's contributions to the foundations of physics and his connections to other eminent figures in the history of the subject, among them Clifford Shull and Abner Shimony.
Goerg Michler summarizes the large field of electron microscopy and clearly presents the different techniques. The author clearly describes the possible applications of microscopy and the requirements for specimen preparation. He illustrates the descriptions with picture examples from practice.The Author:Prof. Dr. rer. nat. habil. Goerg H. Michler was head of the Institute for Materials Science at Martin Luther University Halle-Wittenberg, is honorary chairman of the Institute for Polymer Materials e.V. and chairman of the Heinz Bethge Foundation for Applied Electron Microscopy.
One-dimensional nanomaterials are emerging as promising materials for their many unique characteristics. This book covers their synthesis and applications in batteries, supercapacitors, fuel cells, solar cells, green energy production, flexible electronics, electrochemical sensors, and biomedicine.Progress in nanotechnology offers an opportunity to synthesize materials with unique properties. The properties of nanomaterials can be further improved by growing them in one-dimension structural with variations in their architecture. One-dimensional polymeric nanocomposites offer various advantages such as nano dimensions, high surface area, structural stability, and the ability to tune their electrochemical, electronic, and optical properties. The book covers basic concepts, chemistries, properties, and the importance of one-dimensional nanomaterials, along with their wide applications and state-of-the-art progress in the energy, flexible electronics, sensor, and biomedical fields. The fundamentals of electrochemical behavior and their understanding for various applications are also discussed in detail.This book will provide new direction to scientists, researchers, and students to better understand the chemistry, technologies, and applications of one-dimensional polymeric nanocomposites.
This book contains entirely numerical problems and fully worked solutions in the topic of basic electronic circuits and it is designed for entry-level undergraduate courses as a supplement to standard textbooks and references. Each chapter contains interesting numerical problems with fully worked solutions to illustrate the approach of problem solving techniques for electronic circuits. The book is written in a lucid manner so that students are able to understand the realization behind the mathematical concepts which are the backbone of this subject. The book will benefit students who are taking introductory courses in electronic circuits and devices.
The self-contained properties of discotic liquid crystals (DLCs) render them powerful functional materials for many semiconducting device applications and models for energy and charge migration in self-organized dynamic functional soft materials. The past three decades have seen tremendous interest in this area, fueled primarily by the possibility of creating a new generation of organic semiconductors and wide viewing displays using DLCs. While a number of books on classical calamitic liquid crystals are available, there are, as yet, no books that are dedicated exclusively to the basic design principles, synthesis, and physical properties of DLCs.The first reference book to cover DLCs, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers highlights the chemistry and thermal behavior of DLCs. Divided into six chapters, each with a general description, background, and context for the concepts involved, the book begins with a basic introduction to liquid crystals, describing molecular self-assembly and various types of liquid crystals. It outlines their classification, covers their history and general applications, and focuses on DLCs and their discovery, structure, characterization, and alignment.The book goes on to examine the chemistry and physical properties of various monomeric DLCs, including 25 sections describing the synthesis and mesomorphic properties of monomeric DLCs formed by different cores. The bulk of the book covers the chemistry and mesomorphism of discotic dimers, oligomers, and polymers and concludes with a look at some applicable properties of DLCs.A comprehensive and up-to-date resource, this book is designed to be accessible and of value not just for students and researchers but also to the directors and principal investigators working in this field, providing the foundation and fuel to advance this fast-growing technological field.
Polymer Surface Characterization provides a comprehensive approach to the surface analysis of polymers of technological interest by means of modern analytical techniques. Basic principles, operative conditions, applications, performance, and limiting features are supplied, together with current advances in instrumental apparatus. Each chapter is devoted to one technique and is self-consistent; the end-of-chapter references would allow the reader a quick access to more detailed information.After an introductory chapter, techniques that can interrogate the very shallow depth of a polymer surface, spanning from the top few angstroms in secondary ions mass spectrometry to 2-10 nm in X-ray photoelectron spectroscopy are discussed, followed by Fourier transform infrared spectroscopy and chapters on characterization by scanning probe microscopy, electron microscopies, wettability and spectroscopic ellipsometry.
The Handbook of Natural Polymers: Sources, Synthesis, and Characterization is a comprehensive resource covering extraction and processing methods for polymers from natural sources, with an emphasis on the latest advances. The book begins by introducing the current state-of-the-art, challenges, and opportunities in natural polymers. This is followed by detailed coverage of extraction, synthesis, and characterization methods, organized by polymer type. Along with broad chapters discussing approaches to polysaccharide-based polymers, dedicated chapters offer in-depth information on nanocellulose, chitin and chitosan, gluten, alginate, natural rubber, gelatin, pectin, lignin, keratin, gutta percha, shellac, silk, wood, casein, albumin, collagen, hemicellulose, polyhydroxyalkanoates, zein, soya protein, and gum. The final chapters explore other key themes, including filler interactions and properties in natural polymer-based composites, biocompatibility and cytotoxicity, biodegradability, life cycle, and recycling. Throughout the book, information is supported by data, and guidance is offered regarding potential scale-up and industry factors. As part of a 3-volume handbook offering comprehensive coverage of natural polymers, this book will be of interest to all those looking to gain a broad knowledge of natural polymers, including academic researchers, scientists, advanced students, engineers, and R&D professionals from a range of disciplines and industries.
What is a plasmon? Is it a particle, like a photon or a wave? Plasmonics stands at the frontier of condensed matter physics, which is the world of electrons, optics and of photons. Plasmonics is one of the most active fields in nanophotonics. This book begins by exploring the concepts behind waves, and the electromagnetic description of light when it interacts with metals; it dedicates every chapter thereafter to all aspects of plasmonics. In particular, the surface plasmon polariton wave is explained in full detail, as well as the localized surface plasmon resonance of metallic nanoparticles. The active research area opened by plasmonics, as well as its applications, are also briefly explained, such as advanced biosensing, subwavelength waveguiding, quantum plasmonics, nanoparticle-based cancer therapies, optical nano-antenna and high-efficiency photovoltaic cells.The book is adapted for graduate students and places a special emphasis on providing complete explanations of the fundamental concepts of plasmonics. Further, each of these concepts is illustrated with examples drawn from the most recent scientific literature. Each chapter ends with a set of exercises that will help the reader revise the concepts and go deeper into the world of plasmonics. More than 70 exercises are included.
This book addresses a broad range of fundamental and applied research on nanofluids, from their preparation, stability, and thermal and rheological properties to performance characterization and advanced applications.
Novel approach to the theory of signals and systems in an introductory, accessible textbookSignals and Systems have the reputation of being a difficult subject. Essentials of Signals and Systems is a standalone textbook aiming to change this reputation with a novel approach to this subject, teaching the essential concepts of signals and systems in a clear, friendly, intuitive, and accessible way.The overall vision of the book is that traditional approaches to signals and systems are unnecessarily convoluted, and that students' learning experiences are much improved by making a clear connection between the theory of representation of signal and systems, and the theory of representation of vectors and matrices in linear algebra. The author begins by reviewing the theory of representation in linear algebra, emphasizing that vectors are represented by different coordinates when the basis is changed, and that the basis of eigenvectors is special because it diagonalizes the operator. Thus, in each step of the theory of representation of signals and systems, the author shows the analogous step in linear algebra. With such an approach, students can easily understand that signals are analogous to vectors, that systems are analogous to matrices, and that Fourier transforms are a change to the basis that diagonalizes LTI operators.The text emphasizes the key concepts in the analysis of linear and time invariant systems, demonstrating both the algebraic and physical meaning of Fourier transforms. The text carefully connects the most important transforms (Fourier series, Discrete Time Fourier Transform, Discrete Fourier Transforms, Laplace and z-transforms), emphasizing their relationships and motivations. The continuous and discrete time domains are neatly connected, and the students are shown step-by-step how to use the fft function, using simple examples.Incorporating learning objectives and problems, and supported with simple Matlab codes to illustrate concepts, the text presents to students the foundations to allow the reader to pursue more advanced topics in later courses.Developed from lecture notes already tested with more than 600 students over six years, Essentials of Signals and Systems covers sample topics such as:* Basic concepts of linear algebra that are pertinent to signals and systems.* Theory of representation of signals, with an emphasis on the notion of Fourier transforms as a change of basis, and on their physical meaning.* Theory of representation of linear and time invariant systems, emphasizing the role of Fourier transforms as a change to the basis of eigenvectors, and the physical meaning of the impulse and frequency responses.* What signals and systems have to do with phasors and impedances, and the basics of filter design.* The Laplace transform as an extension of Fourier transforms.* Discrete signals and systems, the sampling theorem, the Discrete Time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT), and how to use the fast fourier transform (fft).* The z-transform as an extension of the Discrete Time Fourier Transform.Essentials of Signals and Systems is an immensely helpful textbook on the subject for undergraduate students of electrical and computer engineering. The information contained within is also pertinent to those in physics and related fields involved in the understanding of signals and system processing, including those working on related practical applications.
This book provides a didactic derivation of the main theories of thermotropic and lyotropic liquid crystals, revealing the common molecular-theoretic framework that underpins both theories. This unified context will help young researchers in coming to grips with the basics of the simplest of liquid crystals, being uniaxial nematic liquid crystals, easing them into the intricacies of more complex forms of such materials irrespective of whether they are thermotropic or lyotropic. The coverage provides a theoretical understanding of the phase behaviour, that is, what drives molecules and particles to spontaneously align themselves, as well as an appreciation of the role of entropy, energy and so on. The focus here is on the main theories for the isotropic-nematic transition, being the Maier-Saupe and the Onsager theories, and how they are derived from a common description, known as (classical) density functional theory (DFT). This book will be a valuable resource for senior undergraduate and graduate students, and experimentalists and engineers who feel intimidated by more formal or rigorous theoretical accounts and textbooks. Exercises at the end of each chapter help the reader to apply the basic concepts also to other types of liquid crystal, in particular the smectic liquid crystal.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.