Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book presents select, recent developments in nonlinear and complex systems reported at the 1st Online Conference on Nonlinear Dynamics and Complexity, held on November 23-25, 2020. It provides an exchange recent developments, discoveries, and progresses in Nonlinear Dynamics and Complexity. The collection presents fundamental and frontier theories and techniques for modern science and technology, stimulates more research interest for exploration of nonlinear science and complexity; and passes along new knowledge and insight to the next generation of engineers and technologists in a range of fields.
. The main aim of this book is to shine a spotlight on key experiments and their crucial importance for advancing our understanding of physics. Physics is an empirical science, and experiments have always been a driving force in the development of our understanding of nature. Facts matter. In that sense, the book attempts to be complementary to the many popularizations of theoretical physics, and to counterbalance the frequent emphasis there on more speculative ideas.Experimental physics is also an essential pillar in physics teaching, as well as helping broader audiences to better understand important concepts, particularly in challenging fields such as relativity or quantum physics, where our common sense intuition often fails.Readers are taken on an historical journey, starting with ¿Free Fall¿ and culminating in ¿Spooky Action at a Distance¿. En route they will encounter many important branches ofphysics, whose main ideas and theoretical description will be given a more empirical meaning. At the end, the reader is invited to reflect on what could be exciting and important directions for fundamental physics. All readers with an undergraduate degree in physical sciences or engineering will enjoy and learn much from this stimulating and original text.
This book presents recent developments in ore microscopy to support the work of engineers and scientists actively engaged in the field of mineral raw materials (processing plant engineers in mines, process mineralogists and chemists, exploration geologists, etc.) or in ore deposit research. Textural analysis must be rigorous, and simple to be practical. With this aim, the author proposes a specific and user-friendly systematic for textural analysis. A high-performance tool to acquire, quantify, and process the data applied for automated ore characterization is key to predict ore behavior, a fundamental aim of geometallurgy. The recently developed AMCO System (Automated Microscopic Characterization of Ores) provides the tool, first prototype available using computer vision coupled with reflected light microscopy. This innovation is introduced in the text and discussed through case studies of actual mining problems.This second volume of the book "A Practical Guide to Ore Microscopy" includes references, indexes, and other relevant information, plus Annexes 1 to 5. The latter include ore and gangue mineral indexes and mineral abbreviations (Annex 1), a brief compendium of common mineral associations in the main ore deposit types (Annex 2), an introduction to the procedures and techniques used to prepare polished sections (Annex 3), and the various tables used to identify common ores by direct microscopic observation (Annexes 4 and 5).
The book gives a detailed description of optical wireless communication (OWC), including optical laser communication, visible light communication, ultraviolet communication, underwater optical communication and future communication technologies. To achieve an integration between theory and practice, the book avoids tedious mathematical deductions and includes theoretical materials as exercises. Most of the exercises are originated from published journal articles. These exercises will aid the readers in understanding the basic concept and methods and evaluating their knowledge acquisition in the field of OWC. The book is structured into Ten chapters that covers main aspects of OWC:- Optical wireless communication system- Coherent optical communication- Modulation, demodulation, and coding- Atmospheric channel, channel estimation, and channel equalization- White LED communication- Underwater laser communication- Ultraviolet communication- Acquisition, aiming, and tracking technology- Partially coherent optical transmission- Optical communication in the futureThe book is a suitable reference for undergraduate or postgraduate students majored in communication engineering, electronic information engineering or computer science, as well as the engineers and technicians in related fields.
With new ideas and results appearing in the field of optics, this second edition presents an in-depth look at lenses free of spherical aberrations and uses illustrative examples.
This book describes a simple yet innovative method for performing Raman spectroscopy of samples submerged under liquid nitrogen. While Raman spectroscopy has proven to be a powerful tool for the characterization of the structure of matter in the gaseous, liquid, and solid phases, one major difficulty in its application has been laser damage to the material under investigation, especially for biological samples. This book demonstrates how immersion of the sample in liquid nitrogen protects the sample from thermal degradation and oxidation at high incident laser power and allows improvements in sensitivity and spectral resolution over room-temperature Raman spectroscopy, leading to the so-called RUN (Raman Spectroscopy Under liquid Nitrogen) technique. Cooling to liquid nitrogen temperature also allows the selection of the lowest energy molecular conformation for molecules which may have many low energy conformers. In addition, the presence of liquid nitrogen over a roughened surface improves the sensitivity of Surface Enhanced Raman Spectroscopy (SERS), enabling the closely related SERSUN (Surface-Enhanced Raman Spectroscopy Under liquid Nitrogen) technique. This book starts with the theoretical and experimental basics of Raman and polarized Raman spectroscopy, before moving on to detailed descriptions of RUN and SERSUN. Room temperature and RUN spectra are provided for over fifty molecules.
The nonlinear optical spectrum signal technology is a new type of optical characterization technology owing to its non-invasiveness and good biocompatibility. This book highlights a comprehensive introduction to the Stimulated Raman scattering (SRS), Anti-Stokes Raman Spectroscopy (CARS), Two-photon Excited Fluorescence (TPEF) and Second Harmonic Generation signals (SHG) technologies. The four types of nonlinear optical signals technologies, especially two-dimensional and three-dimensional imaging, have great application potential in physics, materials science, chemistry and biomedicine. The book covers principles, theoretical calculation methods, signal measurement methods and imaging specific methods. The theoretical part starts from the basics of nonlinear optics and the relationship with strong light, and gradually transitions to theoretical calculation methods for specific optical signals. it combines the classical theory and the quantum theory to help readers develop a thorough understanding of the technologies. The book is a good reference for graduate students majored in physics and chemistry and for researchers working on optics, photonics and materials science.
This book gives a comprehensive account of modern x-ray science, based on the use of synchrotron radiation and x-ray-free electron lasers (XFELs). It emphasizes the new capabilities of XFELs which extend the study of matter to the intrinsic timescales associated with the motion of atoms and chemical transformations and give birth to the new field of non-linear x-ray science. Starting with the historical understanding of the puzzling nature of light, it covers the modern description of the creation, properties, and detection of x-rays within quantum optics. It then presents the formulation of the interactions of x-rays with atomic matter, both, from semi-classical and first-principles quantum points of view. The fundamental x-ray processes and techniques, absorption, emission, Thomson, and resonant scattering (REXS and RIXS) are reviewed with emphasis on simple intuitive pictures that are illustrated by experimental results. Concepts of x-ray imaging and diffractive imaging of atomic and nano structures are discussed, and the quantum optics formulation of diffraction is presented that reveals the remarkable quantum substructure of light. The unique power of x-rays in providing atom and chemical-bond specific information and separating charge and spin phenomena through x-ray polarization (dichroism) effects are highlighted. The book concludes with the discussion of many-photon or non-linear x-ray phenomena encountered with XFELs, such as stimulated emission and x-ray transparency.
This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener-Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.
Dieser Streifzug durch die moderne Physik gibt Einblick in einige wichtige Forschungsthemen wie z.B. Supraleitung, Gravitationswellen oder Quasikristalle. LeserInnen werden mitgenommen auf eine spannende Reise durch verschiedene Teilgebiete der Physik. Komplexe Zusammenhänge werden dabei anschaulich aufbereitet, sodass sowohl Studienanfänger als auch Fachfremde ohne ein tieferes Formelverständnis einen Überblick erhalten. Dabei wird sowohl die experimentelle als auch die theoretische Seite der Forschung beleuchtet, um ein möglichst authentisches Bild von dieser lebendigen und auch für die technologische Entwicklung unverzichtbaren Wissenschaft zu zeichnen. Die aktualisierte Neuauflage enthält zusätzliche Kapitel zu Laser und Mikroskopie.
This book is designed to give the reader with an overview of the design and operation of a laser and some of its important commercial applications. The book reviews the use of lasers for the cooling and trapping of atoms and the application of this technology to the observation of Bose-Einstein condensates and the development of an accurate atomic clock.
There are growing advantages to the use of graphene-based nanophotonics in communication, sensing, security, safety, spectroscopy, manufacturing, biomedicine, agriculture, imaging, and other fields. These advantages, as well as the numerous challenges associated with this technology and proposed solutions to these challenges, are summarized in this book. The key objective of the book is to serve as a single-source reference for the rapidly expanding application aspects of the technology of graphene-based nanophotonics, as well as the number of modules required for their successful implementation. This book seeks to give readers a comprehensive understanding of several elements of graphene-based nanophotonics, such as emerging application areas, the design and modelling of sensors, absorbers, optical fiber, encoders, etc. A complete view of the progress and breakthroughs in novel materials for sensing, detecting and encoding technology is presented. The book also emphasizes theconsequences of THz signals on human health, as well as the environmental components of THz. This book will be of tremendous value for those with an interest in electronic engineering, particularly those keeping an eye on this emerging technology.
This book describes a unique combination of quantum chemical methods for calculating the basic physical properties of luminescent materials, or phosphors. These solid inorganic materials containing an optically active dopant are key players in several major fields of societal interest, including energy-efficient lighting, solar cells, and medical imaging. The novel ab initio methods described in this book are especially designed to target the crowded and complex electronic excited states of lanthanide activators in inorganic solids. The book is well suited to both new and experienced researchers alike and appeals to a broad range of theoretical and experimental backgrounds. The material presented enables an adept understanding of elaborate calculations, which, in tandem with experiments, give essential insight into difficult luminescence problems and quandaries, thus fully preparing the reader for an educated search for new functional luminescent materials
This two-volume book provides an enriching insight into the laser, covering different types of lasers, the basic science behind the technology, their role at the cutting-edge of current scientific research, and their wide-ranging applications. With just high school physics as a prerequisite and favoring qualitative yet scientifically sound explanations over high-level mathematics, this book is aimed at a broad spectrum of readers in physics, chemistry, engineering, medicine, and biology. Its engaging and lucid presentation is enhanced with plenty of illustrations, making the world of the laser accessible to undergraduate students in the sciences and any other inquisitive readers with high school physics under their belts. Furthermore, the text is often laced with anecdotes, picked from history, that are bound to pique the minds of the readers. It is ideal for self-study or as a complement to courses on optics and optoelectronics. This volume, Part 1 of 2, explains the fundamentals of optics, what a laser is, how it works, and what is unique about the light it emits, from fundamental quantum theory through population inversion and cavity to common laser types. It is followed by Part 2 which depicts the many advances in science enabled by the laser, including spectroscopy, nonlinear optics, optical cooling and trapping, and optical tweezers, among many others, and provides a glimpse into the ways that the laser affects our lives via its uses in medicine, manufacturing, the nuclear industry, energy, defence, communication, ranging, pollution monitoring, art conservation, fashion, beauty, and entertainment.
This book includes contributions about mathematics, physics, philosophy of science, economics and finance and resulted from the Summer School "e;Complexity and Emergence: Ideas, Methods, with a Special Attention to Economics and Finance"e; held in Lake Como School of Advanced Studies, on 22-27 July 2018.The aim of the book is to provide useful instruments from the theory of complex systems, both on the theoretical level and the methodological ones, profiting from knowledge and insights from leading experts of different communities. It moves from the volume editors' conviction that to achieve progress in understanding socio-economical as well as ecological problems of our complex word such preparation is needed, together with a critical reconsideration of our basic scientific and economical approach.The potential readers are primarily master and doctorate students of mathematics, information sciences, theoretical physics and economics, as well as research workers in those areas, who want to enlarge their spectrum of knowledge towards the area of complexity and emergence. Since ideas and methods of the theory of complex systems also apply to other areas (from engineering and architecture to biology and medicine, e.g.), students and research workers from those areas will also profit from this book.
Ein kompaktes Lehrbuch für Studieneinsteiger*innen an Fachhochschulen mit Physik als Nebenfach. Die Stoffauswahl orientiert sich an den Lehrplänen der technischen Fächer, wie z. B. Maschinenbau und Luft- und Raumfahrtechnik. Die wesentlichen physikalischen Gesetze der klassischen Physik werden prägnant erklärt, ohne die Vermittlung der grundlegenden Zusammenhänge zu vernachlässigen. Daher wird dem Verständnis der Vorzug gegeben an Stelle einer mathematisch eleganten, formalen Herleitung. Neben den Kernthemen der klassischen Physik bildet die inkompressible Fluiddynamik einen weiteren Schwerpunkt. Damit wird der Grundstein gelegt, um die Physik hinter den technischen Fragestellungen im Ingenieurwesen zu verstehen. Verständnisfragen und Aufgaben ermöglichen eine Selbstüberprüfung des Wissens im ersten Studienjahr. Das Lehrbuch ist geeignet für Studieneinsteiger*innen, die Physik als Grundkurs hatten oder bei denen das Abitur mehr als ein Jahr zurückliegt.
This atlas provides a detailed overview of the novel technique of ex vivo confocal microscopy for rapid imaging of excised tissues in dermatological practice. It features an extensive collection of ex vivo images acquired from normal skin structures and from a variety of neoplastic lesions (benign and malignant) and inflammatory lesions. Each chapter contains several image types of a particular disorder, including gray-scale, digital purple-pink images (DHE) and hematoxylin and eosin (H&E) correlations to assist the acquisition of diagnostic skills. Guidance on how to use techniques for tissue preparation, staining, handling and image acquisition are also provided enabling the reader to develop confidence in integrating this technique into their day-to-day practices. Furthermore, this atlas also provides an update on the ongoing latest advances in the field. Cutaneous Atlas of Ex Vivo Confocal Microscopy covers how to apply these techniques into dermatological practice, especially in Mohs surgery for the evaluation of keratinocytic neoplasm and in dermatopathology for rapid evaluation of varied skin lesions. It is therefore a valuable resource for trainee, residents, practicing dermatologists and dermatopathologists who are seeking a resource to assist in developing their knowledge and skills of utilizing these methodologies.
This textbook is a comprehensive review of many different areas in solar-pumped lasers design and characterization. It enables readers to develop their skills in general solid-state laser design and solar collector design and provides numerous solved exercises at the end of each chapter to further this development. This book begins by introducing the brief history of solar-pumped laser and its potential applications. It explains the basic theories of imaging and non-imaging primary, secondary, and tertiary solar concentrators. It discusses solar-pumped solid-state laser theory and solar-to-laser power conversion efficiencies. There are chapters dedicated to ZEMAX and LASCAD numerical simulation tools, to help develop readers¿ skills in innovative solid-state laser design. This book is one of the first books to relate concentrated solar energy technologies to solid-state laser technologies and is therefore of interest to students, academics, engineers, and laser and optical system designers.
This contributed volume presents recent developments in nonlinear dynamics applied to engineering. Specifically, the authors address stability and bifurcation in large-scale, complex rotor dynamic systems; periodic motions and their bifurcations in nonlinear circuit systems, fault diagnosis of complex engineering systems with nonlinear approaches, singularities in fluid-machinery and bifurcation analysis, nonlinear behaviors in rotor dynamic system with multi-mistuned blades, mode localization induced by mistuning in impellers with periodical and cyclic symmetry, and nonlinear behaviors in fluid-structure interaction and their control. These new results will maximize reader understand on the recent progress in nonlinear dynamics applied to large-scale, engineering systems in general and nonlinear rotors and impellers in particular.
This book will provide readers with a good overview of some of most recent advances in the field of technology for perovskite materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, Xray detection and emerging transistor structures. The book will have an in-depth review of the research topics from world-leading specialists in the field. The authors build connections between the materials¿ physical properties to the main applications such as photovoltaics, LED, FETs and X-ray sensors. They also discuss the similarities and main differences when using perovskites for those devices.
This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas.The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion research. These new developments make LPI more relevant than ever, and the resulting influx of new scientists necessitates new pedagogical material on the subject. In contrast to the classical textbooks on LPI, this book provides a complete description of all wave-coupling instabilities in unmagnetized plasmas in the kinetic as well as fluid pictures, and includes a comprehensive description of the optical smoothing techniques used on high-power lasers and their impact on laser-plasma instabilities. It summarizes all the key developments from the 1970s to the present day in view of the current state of LPI and ICF research; it provides a derivation of the key LPI metrics and formulas from first principles, and connects the theory to experimental observables.With exercises and plenty of illustrations, this book is ideal as a textbook for a course on laser-plasma interactions or as a supplementary text for graduate introductory plasma physics course. Students and researchers will also find it to be an invaluable reference and self-study resource.
This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron-ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity.Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between the photoelectron and the molecular ion to describe the ion's dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
Holography of today is a broad field developed in the meeting between optics and the digital world of computers. A hologram usually contains more or different information on the observed scene than a regular image of the same scene. The development of the field has been accelerated lately due to the improvement of digital cameras, computers, light sources, and spatial light modulators. As a multidisciplinary area, holography connects experts in electro-optical engineering, image processing, and computer algorithms. More experts are needed when holography is utilized in various applications such as microscopy, industrial inspection, biomedicine, and entertainment. This book provides an overview of the world of holography from the aspect of concepts, system architectures, and applications.
This thesis presents research on novel laboratory-scale synchrotron X-ray sources based on inverse Compton scattering and applications of their X-ray radiation using the Munich Compact Light Source (MuCLS) as an example. It provides an introduction to the theory of this laser-electron interaction, laser resonators and X-ray interactions with matter. On this basis, upgrades to the laser system including the development of a new laser optic, X-ray beam stabilisation and two techniques for fast X-ray energy switching of inverse Compton sources are presented. On the application side, the beamline, designed and developed for the inverse Compton X-ray source at the MuCLS, is described before various techniques and applications are demonstrated at this laboratory-scale synchrotron X-ray facility. Among them are K-edge subtraction imaging, X-ray phase contrast imaging and X-ray absorption spectroscopy. Additionally, a new X-ray microscopy technique, called full-field structured-illuminationsuper-resolution X-ray transmission microscopy, is presented.Apart from research conducted at the MuCLS, this thesis contains an in-depth overview on the state of the art of the various types of inverse Compton X-ray sources that have been realised so far. Accordingly, this thesis may serve as a guide and reference work for researchers working with inverse Compton X-ray sources as well as future users of such devices.
Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.
This book deals concisely and coherently with various issues related to electroacoustic waves in piezoelectric layered composites.Starting with the basic linear equations and relations of electromagnet elasticity of homogeneous anisotropic piezoelectric media, the book considers the conditions for possible field or partial conjugation of physical and mechanical fields at the junction of two homogeneous media with geometrically homogeneous surfaces. The variety of electromechanical boundary conditions and the separation of plane and anti-plane fields of elastic deformation in homogeneous piezoelectric crystals are discussed.Then, the statements of the electroacoustic problem in piezo textures are studied and a layered piecewise-homogeneous piezoelectric waveguide is introduced, with non-acoustic contact between different piezoelectric layers.Non-acoustic contact between different piezoelectric layers can lead to the propagation of a hybrid of electroactive waves of plane and anti-plane elastic deformations.In the last part of the book, the problem of controlling electroacoustic waves in a waveguide is formulated. A method for solving problems of control of electroacoustic waves by non-contact surface action is proposed.
Die ganzen 50 Jahre bewuter Grubelei haben mich der Antwort der Fra- ge Was sind Lichtquanten"e; nicht naher gebracht. Heute glaubt zwar jeder Lump, er wisse es, aber er tauscht sich ... ALBERT EINSTEIN (in einem Brief an M. BESSO vom Jahre 1951) Erfahrungsgema fallt es uns nicht leicht, uns von der aus unmittelbarem Erleben geborenen Vorstellung zu trennen, da ein jedes Ding bestimmte, uber langere Zeiten unveranderliche Eigenschaften besitzt, die einander nicht widersprechen. Bekanntlich wurde dieses scheinbar so fest gefugte Weltbild nachhaltig durch die Quantenmechanik erschuttert, die aufzeigte, da je- denfalls im Mikrokosmos eine Einordnung der Dinge in sauberlich getrennte Schubfacher nicht moglich ist. Sie lehrt uns, da die elementaren Objekt- und dazu zahlt auch das Licht - eine verbluffende Gabe der Verwandlung besitzen: Einmal erscheinen sie uns als Welle und einmal als Teilchen. Heutzutage ist die Optik wie keine andere Disziplin dazu geeignet, uns diesen Dualismus unmittelbar, und dazu noch im Wortsinn, vor Augen zu fuhren.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.