Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials.Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
Leveraging advanced optical instrumentation and spectroscopy for enhanced visual technology and scientific research.
This third volume provides comprehensive protocols on pre-analytical, analytical, plasma, and serum proteomics. New and updated chapters are divided into nine sections, detailing blood processing and handling strategies, discovery- and targeted-based mass spectrometry, including workflows to aid in discovery and targeted data analysis, in addition to software and bioinformatics for the plasma proteome. This edition further integrates emerging areas in the development of technologies for plasma proteomics and assay platforms in biomarker discovery and translational proteomics, enrichment and detection strategies to understand the plasma proteome, and peptide, lipid and metabolite targeted assays. We also detail the emerging analysis of extracellular vesicles isolated from plasma. Written in the format of the highly successful Methods in Molecular Biology series, each of the 33 chapters includes an introduction to the topic, lists necessary materials and methods, includes hints and tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Serum/Plasma Proteomics: Methods and Protocols, Third Edition aims to be comprehensive guide for researchers.
Sustainable Quality Improvements for Isotope Dilution in Molecular Ultratrace Analyses: Fitness for Purpose, Performance-Based Criteria, and Measurement Uncertainty uses a novel Sustainable Quality Improvement (SQI) framework with the aim of helping to re-introduce much needed flexibility and restore accountability and integrity necessary for developing confidence in products obtained with these specialty assays. The book can also be used as a comprehensive reference text for data and information on matrix-specific target analytes detection/quantitation limits, and measurement of uncertainties for planning purposes, congeners profiles, multi-phasic, multi-component and multi-analyte samples processing flow charts, and useful definitions of the underlying technology-relevant terminologies. The SQI framework around which the book is constructed paves the way for the innovative technological solutions described in the book and is powered by three key elements: Fitness for Purpose (Data Quality Objectives), Performance-Based Measurement System (flexibility, latitude), and Measurement Uncertainty (accountability). Together, they facilitate the development and validation of advanced methodologies to resolve many of the contemporary issues associated with continuously evolving and demanding regulatory requirements. A stronger focus on effective performance feedback is demonstrated to help laboratories rethink their own approach to quality improvements.
Wave Optics in Infrared Spectroscopy starts where conventional books about infrared spectroscopy end. Whereas the latter are based on the Bouguer-Beer-Lambert law, the cornerstones of this book are wave optics and dispersion theory. This gap between both levels of theory is bridged to allow a seamless transition from one to the other. Based on these foundations, the reader is able to choose which level of theory is adequate for the particular problem at hand. Advanced topics like 2D correlation analysis, chemometrics and strong coupling are introduced and viewed from a wave optics perspective. Spectral mixing rules are also considered to better understand spectra of heterogeneous samples. Finally, optical anisotropy is examined to allow a better understanding of spectral features due to orientation and orientational averaging. This discussion is based on a 4 x 4 matrix formalism, which is used not only to simulate and analyze complex materials, but also to understand vibrational circular dichroism from a (semi-) classical point of view. Wave Optics in Infrared Spectroscopy is written as a tool to reunite the fragmented field of infrared spectroscopy. It will appeal to chemists, physicists, and chemical/optical engineers.
This is the sixth in a series of volumes investigating, discussing and explaining the application of instrumental spectrometric and spectroscopic techniques to the determination of molecular structures.This volume concentrates on the analysis of twenty common medicines.The series is intended to bridge A-level (UK) and K12 (USA) courses and the first two years of university chemistry studies.Each chapter follows the same style with an introductory page discussing the application and history of the development of the medicine with a summary of the elemental data and the formula mass, leading to the determination of the empirical and molecular formulas of the compound. We then continue with the analysis of the infrared, mass and proton & carbon-13 NMR spectra.
This book focuses on advanced optical properties and applications of tellurite glasses and tellurite glasses doped with rare-earth nanoparticles. The initial chapter presents the current state of the art in tellurite glass development, focusing on those compositions doped with nanoparticles based on rare-earth elements such as neodymium and erbium. The book then discusses various linear and nonlinear optical properties (e.g., refractive index, absorption, optical susceptibility) of these glasses in the visible and ultraviolet spectral regions. Finally, it looks at a selection of recent technological applications of doped tellurite glasses, such as highly efficient laser glass, novel temperature sensors, and advanced optical fiber material. Featuring comprehensive and up-to-date data sets, along with a topical discussion of promising new areas of application, this book is particularly suitable for researchers and industry professionals working in the field of glass manufacturing foroptics and laser applications.
This book provides a comprehensive overview of Nuclear Magnetic Resonance (NMR) theory, its applications, and advanced techniques to improve the quality and speed of NMR data acquisition. In this book, the author expands his outstanding Ph.D. thesis and provides a valuable resource for researchers, professionals, and students in the field of NMR spectroscopy.The book covers quantum mechanics basics, and topics like density operators, pulse sequences, 1D pulse acquisition, INEPT (Insensitive nuclei enhancement by polarization transfer), product operators, and 2D NMR principles. It also explores innovative experiments like States HSQC (Heteronuclear Single Quantum Coherence) and echo-antiecho HSQC with gradients.In the subsequent chapters, the author discusses Pure Shift NMR, including PSYCHE (Pure Shift Yielded by Chirp Excitation) and its optimizations, such as waveform parameterization and time-reversal methods. The 'Discrete PSYCHE' approach and Ultrafast PSYCHE-iDOSY (Diffusion-ordered spectroscopy) are also highlighted.This book presents the POISE (Parameter Optimisation by Iterative Spectral Evaluation) software for real-time NMR experiment optimization, including pulse width calibration and Ernst angle optimization, and demonstrates applications across various NMR experiments.Lastly, the book examines accelerated 2D NMR data collection and the NOAH (NMR by Ordered Acquisition using 1H detection) supersequences, emphasizing automated pulse program creation using GENESIS (GENEration of Supersequences In Silico). Covered NMR experiments include 13C sensitivity-enhanced HSQC, 15N HMQC (Heteronuclear Multiple Quantum Coherence), dual HSQC, HSQC-TOCSY (Total Correlation Spectroscopy), HMBC (Heteronuclear Multiple Bond Correlation), and ADEQUATE (Adequate Sensitivity Double-Quantum Spectroscopy).
This thesis describes how the rich internal degrees of freedom of molecules can be exploited to construct the first ¿clock¿ based on ultracold molecules, rather than atoms. By holding the molecules in an optical lattice trap, the vibrational clock is engineered to have a high oscillation quality factor, facilitating the full characterization of frequency shifts affecting the clock at the hertz level. The prototypical vibrational molecular clock is shown to have a systematic fractional uncertainty at the 14th decimal place, matching the performance of the earliest optical atomic lattice clocks. As part of this effort, deeply bound strontium dimers are coherently created, and ultracold collisions of these Van der Waals molecules are studied for the first time, revealing inelastic losses at the universal rate. The thesis reports one of the most accurate measurements of a molecule¿s vibrational transition frequency to date. The molecular clock lays the groundwork for explorations into terahertz metrology, quantum chemistry, and fundamental interactions at atomic length scales.
This book focuses on the strategies and methods for quality control of Chinese medicines used in prevention and treatment of diseases for thousands of years in China and East Asia. It explains various strategies and methods for quality markers discovery and herbal glycoanalysis, as well as practices for control of heavy metal and pesticide residues. Strategies to overcome the shortage of reference compounds for quality control of Chinese medicines are also provided. The book also introduces analytical techniques for different analytes in Chinese medicines with an emphasis on sample preparation in automation and high extraction efficiency methods, the key process affecting the time and accuracy of the techniques. It is of interest to quality control scientists in academia and industry working on Chinese medicines and/or herbal medicine and also pharmacists, pharmacologists, food chemists, and nutritionists who want to understand Chinese medicines.
Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, Second Edition, addresses the possibilities provided by scattering techniques in the study of soft matter. It fills the gap between the fundamental scattering processes, which are described by the general theoretical framework of elastic and quasi-elastic interaction of radiation with matter, and state-of-the-art applications to specific soft matter systems. Three probes are discussed in detail: neutrons, X-ray photons, and visible light. The first part of the book is dedicated to the use of general principles for the measurement and analysis of scattered intensity: elementary scattering process, data reduction, general theorems, the concept of reciprocal space, and its link to structural and dynamical information in direct space. In the second part, methods and techniques are further discussed, including resolution effects, contrast variation, static and dynamic light scattering, quasi-elastic neutron scattering, and reflectometry and grazing incidence techniques. Part three deals with the state of the art of scattering studies of typical soft matter systems (polymers, self-assembled surfactant systems and liquid crystals, microemulsions, colloids, aggregates, biological systems) with dedicated chapters for particle interactions, and modelling. Part four highlights special applications, from light scattering in turbid media to scattering under external constraints, applications of neutron reflectometry, characterization of relaxation modes by neutron spectroscopy and industrial applications. This new edition, written by the lecturers of the Bombannes Summer School, will be most useful as a learning tool for Master’s and PhD students, post-docs, and young researchers moving into the field. As with the previous edition, it will also be a reference for any scientist working in soft matter, where scattering techniques are ubiquitous, used both in small laboratories and at large-scale research facilities.
This book provides a comprehensive introduction to photoelectron angular distributions and their use in the laboratory to study light-matter interactions. Photoelectron angular distribution measurements are useful because they can shed light on atomic and molecular electronic configurations and system dynamics, as well as provide information about quantum transition amplitudes and relative phases that are not obtainable from other types of measurements. For example, recent measurements of molecular-frame photoelectron angular distributions have been used to extract photoelectron emission delays in the attosecond range which can provide ultra-sensitive maps of molecular potentials. Additionally, photoelectron angular distribution measurements are an essential tool for studying negative ions.Here, the author presents a detailed, yet easily accessible, theoretical background necessary for experimentalists performing photoelectron angular distribution measurements to better understand their results. The various physical influences on photoelectron angular distributions are revealed through analytical models with the use of angular momentum coupling algebra and spherical tensor operators. The classical and quantum treatments of photoelectron angular distributions are covered clearly and systematically, and the book includes, as well, a chapter on relativistic interactions. Furthermore, the primary methods used to measure photoelectron angular distributions in the laboratory, such as photodetachment electron spectroscopy, velocity-map imaging, and cold target recoil ion momentum spectroscopy, are described. This book features introductory material as well as new insights on the topic, such as the use of angular momentum transfer theory to understand the process of photoelectron detachment in atoms and molecules. Including key derivations, worked examples, and additional exercises for readers to try on their own, this book serves as both a critical guide for young researchers entering the field and as a useful reference for experienced practitioners.
This textbook presents the principles and methods for the measurement of radioactivity in the environment. In this regard, specific low-level radiation counting and spectrometry or mass spectrometry techniques are discussed, including sources, distribution, levels and dynamics of radioactivity in nature. The author gives an accurate description of the fundamental concepts and laws of radioactivity as well as the different types of detectors and mass spectrometers needed for detection. Special attention is paid to scintillators, semiconductor detectors, and gas ionization detectors. In order to explain radiochemistry, some concepts about chemical separations are introduced as well. The book is meant for graduate and advanced undergraduate students in physics, chemistry or engineering oriented to environmental sciences, and to other disciplines where monitoring of the environment and its management is of great interest.
This volume highlights the potentials as well as the limits and challenges of human breath analysis and describes the current efforts made to advance this promising technology from bench to bed. Human breath analysis is a young, interdisciplinary and innovative research field aiming to provide a smart and non-invasive diagnostic tool, which can be used for screening, detecting and monitoring of diseases or metabolic disorders. This book presents different approaches for breath analysis including real-time and offline mass spectrometry as well as optical and semiconductor gas sensing methods. Besides, the role of smart algorithms to improve the performance of those technologies and the importance of pulmonary function diagnostics for more reliable and meaningful breath analysis are highlighted. Finally, current application scenarios and future perspectives of breath analysis and pulmonary functioning tests are addressed.The volume is useful for researchers, who are new in the field, to easily get an overview of the current status and the challenges present in human breath analysis. Topics from fundamental research over targeted sensor development and application scenarios are described. Thus, this volume covers all development stages providing support and inspiration for engineers, medical doctors and scientists from various fields.
This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range.The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.
The volume details techniques, methods, and conceptual developments to further the study of protein aggregation with emphasis on the pleiomorphic proteins implicated in etiology of neurodegeneration. Chapters guide readers through in vitro and in vivo studies of fibrillization and liquid-liquid phase separation processes, and offer a comprehensive account of the state-of-art of structural studies of protein aggregation. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Aggregation: Methods and Protocols aims to be useful and practical guide to new researchers and experts looking to expand their knowledge.
This book addresses the application of Raman spectroscopic techniques to a range of diverse problems which arise in the study, conservation and restoration of artefacts and sites closely related to our cultural heritage as well as in authentication. These themes are naturally wider than what at first might be considered as artworks and archaeological artefacts and the topics include pigments, paintings, ceramics, glass, sculpture and patination / corrosion, textiles, industrial archaeology, the degradation and preservation of biomaterials, mummies and human skeletal remains. An interesting feature is the inclusion of modern case studies which describe specific problems and approaches to the Raman spectral analysis of items important to our cultural heritage. The text is prefaced with an introduction to the important parameters used in nondestructive Raman measurements and also highlights some future applications based upon novel miniaturised instrumentation for in-field studies and potential screening work which will identify specimens which would repay further studies in the laboratory. An attempt is made to give a snapshot of the state-of-the-art evolution since the beginning of the technique (1970s) and to point out potential further development. The book is co-edited by three international experts with many years' experience in the application of Raman spectroscopy to artworks, archaeological artefacts and in the investigation of materials and sites for cultural heritage preservation and each editor has undertaken to write individual chapters and different topics personally. The adopted approach is designed to convey the sort of information which has become available from the adoption of analytical Raman spectroscopy to different problems in the field of cultural heritage preservation through the spectral interrogation of artefacts and how the interpretation of the spectral data can assist museum curators, archaeologists and cultural heritage historians in the preservation and conservation of ancient materials and sites : a particular advantage in this respect is the ability of Raman spectroscopy to determine -generally in a strictly noninvasive procedure - at the laboratory or on-site with mobile instruments, the presence of both organic and inorganic components in a particular specimen together nondestructively without any chemical and mechanical pretreatment being undertaken, which is an essential requirement for rare and valuable samples . An important aside from this work is the means of spectral identification of ongoing biodeterioration and biological colonisation in specimens in storage and the effects of environmental deterioration such as humidity and temperature upon their integrity.
The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments.
This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena.Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.
This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area.The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the StranskiKrastanov growth mode, is presented.
This book provides a detailed, self-contained description of automatic indexing of crystal diffraction patterns, considering both ab initio indexing and indexing of patterns originating from known structures. Introductory chapters equip the reader with the necessary basic knowledge of geometric crystallography, as well as kinematic and dynamic theories of crystal diffraction. Subsequent chapters delve and describe ab initio indexing of single crystal diffraction patterns and indexing of patterns for orientation determination. The book also reviews methods of indexing powder diffraction and electron spot-type patterns, as well the subject of multigrain indexing. Later chapters are devoted to diffraction by helical structures and quasicrystals, as well as some aspects of lattice parameter refinement and strain determination.The book is intended equally for materials scientists curious about 'nuts and bolts' of diffraction pattern indexing and orientation mapping systems, as well as interdisciplinary researchers from physics, chemistry, and biology involved in crystallographic computing. It provides a rigorous, yet accessible, treatment of the subject matter for graduate students interested in understanding the functioning of diffraction pattern indexing engines.
This book presents innovative laser desorption ionization (LDI)-active nanophotonic structures for addressing the challenges that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is currently facing and for enhancing LDI efficiency. It presents a variety of cutting-edge nanophotonic structures to satisfy the mass-analytical needs of sensitivity, reproducibility, and quantification. As opposed to the commercialized, conventional organic matrix used in MALDI-MS, these nanostructures are validated to be highly effective in detecting small metabolites and drugs, highlighting their considerable potential in the mass spectrometry field. It also systematically elucidates fundamental LDI processes in terms of the photo-thermal, electronic, and structural characteristics of nanophotonic structures, offering mechanistic knowledge of LDI-MS. Even though LDI-MS performance is heavily influenced by a number of nanostructure parameters, relatively little is known about the LDI processes associated with those characteristics. An in-depth understanding of nanostructure characteristics and LDI mechanisms thus paves the way for more effective, rational design and development of nanostructures with improved LDI capabilities. Further, with a focus on multiple cascades in nanostructure functions in response to laser pulse stimuli, this book provides detailed, step-by-step procedures to design and construct a nanophotonic, LDI-active platform, which may serve as a roadmap for graduate students in the field of mass spectrometry. Readers, including graduate students, researchers, and experts working in the related areas of mass spectrometry, nanophotonics, and material science and material engineering, will find a wealth of useful information in this book.
This detailed volume provides a comprehensive overview of state-of-the-art metabolomics methods based on mass spectrometry (MS), and their application in food, nutrition, and biomedical research. The chapters assembled herein cover hot topics related to sample preparation, chromatographic and electrophoretic separation, MS-based analysis, as well as data processing and analysis. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry for Metabolomics serves as a timely guide for chemists, biochemists, biologists, nutritionists, clinicians, and other experts working in the growing and exciting field of metabolomics.
This thesis makes significant advances towards an understanding of superconductivity in the cuprate family of unconventional, high-temperature superconductors. Even though the high-temperature superconductors were discovered over 35 years ago, there is not yet a general consensus on an acceptable theory of superconductivity in these materials. One of the early proposals suggested that collective magnetic excitations of the conduction electrons could lead them to form pairs, which in turn condense to form the superconducting state at a critical temperature Tc. Quantitative calculations of Tc using experimental data were, however, not available to verify the applicability of this magnetic mechanism. In this thesis, the author constructed an angle-resolved photoemission apparatus that could provide sufficiently accurate data of the electronic excitation spectra of samples in the normal state, data which was furthermore unusually devoid of any surface contamination. The author also applied the Bethe-Salpeter method to his uncommonly pristine and precise normal state data, and was able to predict the approximate superconducting transition temperatures of different samples. This rare combination of experiment with sophisticated theoretical calculations leads to the conclusion that antiferromagnetic correlations are a viable candidate for the pairing interaction in the cuprate superconductors.
This updated volume provides stepwise instructions for the analysis of numerous clinically important analytes by mass spectrometry. Mass spectrometry offers clinical laboratory scientists a number of advantages including increased sensitivity and specificity, multiple component analysis, and limited need for specialized reagents. These techniques are essential in laboratory fields including endocrinology, biochemical genetics, drug analysis, proteomics, and pathogen identification. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Clinical Applications of Mass Spectrometry in Biomolecular Analysis: Methods and Protocols, Second Edition is an ideal resource for clinical laboratory scientists who are already using or thinking of bringing mass spectrometry to their laboratories.
To date, processing of high-throughput Mass Spectrometry (MS) data is accomplished using serial algorithms. Developing new methods to process MS data is an active area of research but there is no single strategy that focuses on scalability of MS based methods. Mass spectrometry is a diverse and versatile technology for high-throughput functional characterization of proteins, small molecules and metabolites in complex biological mixtures. In the recent years the technology has rapidly evolved and is now capable of generating increasingly large (multiple tera-bytes per experiment) and complex (multiple species/microbiome/high-dimensional) data sets. This rapid advance in MS instrumentation must be matched by equally fast and rapid evolution of scalable methods developed for analysis of these complex data sets. Ideally, the new methods should leverage the rich heterogeneous computational resources available in a ubiquitous fashion in the form of multicore, manycore, CPU-GPU, CPU-FPGA, and IntelPhi architectures. The absence of these high-performance computing algorithms now hinders scientific advancements for mass spectrometry research. In this book we illustrate the need for high-performance computing algorithms for MS based proteomics, and proteogenomics and showcase our progress in developing these high-performance algorithms.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.