Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In the year 1900 at the International Congress of Mathematicians in Paris David Hilbert delivered what is now considered the most important talk ever given in the history of mathematics, proposing 23 major problems worth working at in the future. One hundred years later the impact of this talk is still strong: some problems have been solved, new problems have been added, but the direction once set - identify the most important problems and focus on them - is still actual.Computational Intelligence (CI) is used as a name to cover many existing branches of science, with artificial neural networks, fuzzy systems and evolutionary computation forming its core. In recent years CI has been extended by adding many other subdisciplines and it became quite obvious that this new field also requires a series of challenging problems that will give it a sense of direction. Without setting up clear goals and yardsticks to measure progress on the way many research efforts are wasted.The book written by top experts in CI provides such clear directions and the much-needed focus on the most important and challenging research issues, showing a roadmap how to achieve ambitious goals.
Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.
In science, engineering and economics, decision problems are frequently modelled by optimizing the value of a (primary) objective function under stated feasibility constraints. In many cases of practical relevance, the optimization problem structure does not warrant the global optimality of local solutions; hence, it is natural to search for the globally best solution(s). Global Optimization in Action provides a comprehensive discussion of adaptive partition strategies to solve global optimization problems under very general structural requirements. A unified approach to numerous known algorithms makes possible straightforward generalizations and extensions, leading to efficient computer-based implementations. A considerable part of the book is devoted to applications, including some generic problems from numerical analysis, and several case studies in environmental systems analysis and management. The book is essentially self-contained and is based on the author's research, in cooperation (on applications) with a number of colleagues. Audience: Professors, students, researchers and other professionals in the fields of operations research, management science, industrial and applied mathematics, computer science, engineering, economics and the environmental sciences.
In this book, various aspects of cognitive and emotional behaviour is described. In chapter one, a state of the art introduction to VH is presented and the associated research is given. In Chapter 2, cognitive and emotions processes are described. A Comprehensive context model for multi-party interactions with the VH is given in the next chapter. Finally, it is very important to model the socializing of groups of virtual humans. This is discussed in Chapter 4. The automatic modelling of expressions for VH is described in Chapter 5. The last chapter gives a case study of an intelligent kios avatar and its usability.This book gives examples of some advances that enable VH to behave intelligently. It provides an overview of these research problems and some unsolved problems.
Nowadays neural computation has become an interdisciplinary field in its own right; researches have been conducted ranging from diverse disciplines, e.g. computational neuroscience and cognitive science, mathematics, physics, computer science, and other engineering disciplines. From different perspectives, neural computation provides an alternative methodology to understand brain functions and cognitive process and to solve challenging real-world problems effectively. Trends in Neural Computation includes twenty chapters either contributed from leading experts or formed by extending well selected papers presented in the 2005 International Conference on Natural Computation. The edited book aims to reflect the latest progresses made in different areas of neural computation, including theoretical neural computation, biologically plausible neural modeling, computational cognitive science, artificial neural networks - architectures and learning algorithms and their applications in real-world problems.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.