Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This text provides an introduction to the applications and implementations of partial differential equations. The content is structured in three progressive levels which are suited for upper-level undergraduates with background in multivariable calculus and elementary linear algebra (chapters 1-5), first- and second-year graduate students who have taken advanced calculus and real analysis (chapters 6-7), as well as doctoral-level students with an understanding of linear and nonlinear functional analysis (chapters 7-8) respectively. Level one gives readers a full exposure to the fundamental linear partial differential equations of physics. It details methods to understand and solve these equations leading ultimately to solutions of Maxwell's equations. Level two addresses nonlinearity and provides examples of separation of variables, linearizing change of variables, and the inverse scattering transform for select nonlinear partial differential equations. Level three presents rich sources of advanced techniques and strategies for the study of nonlinear partial differential equations, including unique and previously unpublished results. Ultimately the text aims to familiarize readers in applied mathematics, physics, and engineering with some of the myriad techniques that have been developed to model and solve linear and nonlinear partial differential equations.
This book treats all of the most commonly used theories of the integral. After motivating the idea of integral, we devote a full chapter to the Riemann integral and the next to the Lebesgue integral. Another chapter compares and contrasts the two theories. The concluding chapter offers brief introductions to the Henstock integral, the Daniell integral, the Stieltjes integral, and other commonly used integrals. The purpose of this book is to provide a quick but accurate (and detailed) introduction to all aspects of modern integration theory. It should be accessible to any student who has had calculus and some exposure to upper division mathematics. Table of Contents: Introduction / The Riemann Integral / The Lebesgue Integral / Comparison of the Riemann and Lebesgue Integrals / Other Theories of the Integral
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that isextensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
lt;p>Atherosclerosis is a pathological condition of the arteries in which plaque buildup and stiffening (hardening) can lead to stroke, myocardial infarction (heart attacks), and even death. Cholesterol in the blood is a key marker for atherosclerosis, with two forms: (1) LDL - low density lipoproteins and (2) HDL - high density lipoproteins. Low LDL and high HDL concentrations are generally considered essential for limited atherosclerosis and good health.</p><div><p>This book pertains to a mathematical model for the spatiotemporal distribution of LDL and HDL in the arterial endothelial inner layer (EIL, intima). The model consists of a system of six partial differential equations (PDEs) with the dependent variables</p></div><div><p>1. ,,,,(,,,,,,,,,): concentration of modified LDL</p></div><div><p>2. ,,,,,,,): concentration of HDL</p></div><div><p>3. ,,,,(,,,,,,,,,): concentration of chemoattractants</p></div><div><p>4. ,,,,(,,,,,,,,,): concentration of ES cytokines</p></div><div><p>5. ,,,,(,,,,,,,,,): density of monocytes/macrophages</p></div><div><p>6. ,,,,(,,,,,,,,,): density of foam cells</p></div><div><p>and independent variables</p></div><div><p>1. ,,,,: distance from the inner arterial wall</p></div><div><p>2. ,,,,: time</p></div><div><p>The focus of this book is a discussion of the methodology for placing the model on modest computers for study of the numerical solutions. The foam cell density ,,,,(,,,,,,,,,) as a function of the bloodstream LDL and HDL concentrations is of particular interest as a precursor for arterial plaque formation and stiffening.</p></div><p>The numerical algorithm for the solution of the model PDEs is the method of lines (MOL), a general procedure for the computer-based numerical solution of PDEs. The MOL coding (programming) is in R, a quality, open-source scientific computing system that is readily available from the Internet. The R routines for the PDE model are discussed in detail, and are available from a download link so that the reader/analyst/researcher can execute the model to duplicate the solutions reported in the book, then experiment with the model, for example, by changing the parameters (constants) and extending the model with additional equations.</p></div>
This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central ,,,,2, ,,,,, ,,,,, Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful.Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter and the number of references given at the end due to the publishing plan of this book that limits its size. Nevertheless, we gratefully acknowledge the contribution of all those authors whose names have been left out.Some knowledge in introductory algebra and college calculus is assumed throughout the book. Integration is extensively used in several chapters, and many results discussed in Part I (Chapters 1 to 9) of our book are used in this volume.Chapter 10 is on Inverse Gaussian distribution and its extensions. The Birnbaum-Saunders distribution and its extensions along with applications in actuarial sciences is discussed in Chapter 11. Chapter 12 discusses Pareto distribution and its extensions. The Laplace distribution and its applications in navigational errors is discussed in the next chapter. This is followed by central chi-squared distribution and its applications in statistical inference, bioinformatics and genomics. Chapter 15 discusses Student's ,,,, distribution, its extensions and applications in statistical inference. The ,,,, distribution and its applications in statistical inference appears next. Chapter 17 is on Weibull distribution and its applications in geology and reliability engineering. Next two chapters are on Rayleigh and Maxwell distributions and its applications in communications, wind energy modeling, kinetic gas theory, nuclear and thermal engineering, and physical chemistry. The last chapter is on Gumbel distribution, its applications in the law of rare exceedances.Suggestions for improvement are welcome. Please send them to rajan.chattamvelli@vit.ac.in.
This book consists of lecture notes for a semester-long introductory graduate course on dynamical systems and chaos taught by the authors at Texas A&M University and Zhongshan University, China. There are ten chapters in the main body of the book, covering an elementary theory of chaotic maps in finite-dimensional spaces. The topics include one-dimensional dynamical systems (interval maps), bifurcations, general topological, symbolic dynamical systems, fractals and a class of infinite-dimensional dynamical systems which are induced by interval maps, plus rapid fluctuations of chaotic maps as a new viewpoint developed by the authors in recent years. Two appendices are also provided in order to ease the transitions for the readership from discrete-time dynamical systems to continuous-time dynamical systems, governed by ordinary and partial differential equations. Table of Contents: Simple Interval Maps and Their Iterations / Total Variations of Iterates of Maps / Ordering among Periods: The Sharkovski Theorem / Bifurcation Theorems for Maps / Homoclinicity. Lyapunoff Exponents / Symbolic Dynamics, Conjugacy and Shift Invariant Sets / The Smale Horseshoe / Fractals / Rapid Fluctuations of Chaotic Maps on RN / Infinite-dimensional Systems Induced by Continuous-Time Difference Equations
This book continues the material in two early Fast Start calculus volumes to include multivariate calculus, sequences and series, and a variety of additional applications. These include partial derivatives and the optimization techniques that arise from them, including Lagrange multipliers. Volumes of rotation, arc length, and surface area are included in the additional applications of integration. Using multiple integrals, including computing volume and center of mass, is covered. The book concludes with an initial treatment of sequences, series, power series, and Taylor's series, including techniques of function approximation.
The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, biological systems, motion of a plate in a Newtonian fluid, ,,,,,,,,I ,,,,? controller for the control of dynamical systems, and so on. It is challenging to obtain the solution (both analytical and numerical) of related nonlinear partial differential equations of fractional order. So for the last few decades, a great deal of attention has been directed towards the solution for these kind of problems. Different methods have been developed by other researchers to analyze the above problems with respect to crisp (exact) parameters.However, in real-life applications such as for biological problems, it is not always possible to get exact values of the associated parameters due to errors in measurements/experiments, observations, and many other errors. Therefore, the associated parameters and variables may be considered uncertain. Here, the uncertainties are considered interval/fuzzy. Therefore, the development of appropriate efficient methods and their use in solving the mentioned uncertain problems are the recent challenge.In view of the above, this book is a new attempt to rigorously present a variety of fuzzy (and interval) time-fractional dynamical models with respect to different biological systems using computationally efficient method. The authors believe this book will be helpful to undergraduates, graduates, researchers, industry, faculties, and others throughout the globe.
This book introduces integrals, the fundamental theorem of calculus, initial value problems, and Riemann sums. It introduces properties of polynomials, including roots and multiplicity, and uses them as a framework for introducing additional calculus concepts including Newton's method, L'Hopital's Rule, and Rolle's theorem. Both the differential and integral calculus of parametric, polar, and vector functions are introduced. The book concludes with a survey of methods of integration, including u-substitution, integration by parts, special trigonometric integrals, trigonometric substitution, and partial fractions.
The main result of this book is a proof of the contradictory nature of the Navier¿Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ¿+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ¿¿¿¿(¿¿¿¿, ¿¿¿¿) to the NSP exists for all ¿¿¿¿ ¿ 0 and ¿¿¿¿(¿¿¿¿, ¿¿¿¿) = 0). It is shown that if the initial data ¿¿¿¿0(¿¿¿¿) ¿ 0, ¿¿¿¿(¿¿¿¿,¿¿¿¿) = 0 and the solution to the NSP exists for all ¿¿¿¿ ¿ ¿+, then ¿¿¿¿0(¿¿¿¿) := ¿¿¿¿(¿¿¿¿, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space ¿¿¿¿21(¿3) × C(¿+) is proved, ¿¿¿¿21(¿3) is the Sobolev space, ¿+ = [0, ¿). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, ,,,,2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are drawn from different fields. An up-to-date reference appears at the end of the book.Chapter 1 introduces the basic concepts on random variables, and gives a simple method to find the mean deviation (MD) of discrete distributions. The Bernoulli and binomial distributions are discussed in detail in Chapter 2. A short chapter on discrete uniform distribution appears next. The next two chapters are on geometric and negative binomial distributions. Chapter 6 discusses the Poisson distribution in-depth, including applications in various fields. Chapter 7 is on hypergeometric distribution. As most textbooks in the market either do not discuss, or contain only brief description of the negative hypergeometric distribution, we have included an entire chapter on it. A short chapter on logarithmic series distribution follows it, in which a theorem to find the kth moment of logarithmic distribution using (k-1)th moment of zero-truncated geometric distribution is presented. The last chapter is on multinomial distribution and its applications.The primary users of this book are professionals and practitioners in various fields of engineering and the applied sciences. It will also be of use to graduate students in statistics, research scholars in science disciplines, and teachers of statistics, biostatistics, biotechnology, education, and psychology.
Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.
This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "e;invisible obstacles."e; In Chapter 5, it provides a solution to the Navier‒Stokes problem in ℝ³. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier‒Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies.
The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering ,,,,(,,,,;,,,,;,,,,), where ,,,,(,,,,;,,,,;,,,,) is the scattering amplitude, ,,,,;,,,, ,,,, ,,,,2 is the direction of the scattered, incident wave, respectively, ,,,,2 is the unit sphere in the and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By the dimensionality one understands the minimal number of variables of a function describing the data or an object. In an inverse obstacle scattering problem this number is 2, and an example of non-over-determined data is ,,,,(,,,,) := ,,,,(,,,,;,,,,,, By sub-index 0 a fixed value of a variable is denoted.</p>It is proved in this book that the data ,,,,(,,,,), known for all ,,,, in an open subset of ,,,, determines uniquely the surface ,,,, and the boundary condition on ,,,,. This condition can be the Dirichlet, or the Neumann, or the impedance type.</p>The above uniqueness theorem is of principal importance because the non-over-determined data are the minimal data determining uniquely the unknown ,,,,. There were no such results in the literature, therefore the need for this book arose. This book contains a self-contained proof of the existence and uniqueness of the scattering solution for rough surfaces.</p>
This book is to help post-graduate students to get into gravitational wave astronomy. We assume the knowledge of General Relativity theory, though we will concentrate on the physics and often omit mathematically strict derivations. We provide references to already existing literature where possible, this helps us to see a broad picture, skipping the details. The uniqueness of this book is in that it covers three frequency bands and three major world-wide efforts to detect gravitational waves. The LIGO and Virgo scientific collaboration has detected first gravitational waves and the merger of black holes become now almost a routine. We do expect many discoveries yet to come, especially in the joined gravitational and electromagnetic observations. LISA, the space-based gravitational wave observatory, will be launched around 2034 and will be able to detect thousands of GW sources in the milli-Hz band. Pulsar timing array observations have accumulated 20-years' worth of data and we expected detection of GWs in the nano-Hz band within the next decade. We describe the gravitational wave sources and data analysis techniques in each frequency band.
This is an introductory book about nonlinear waves. It focuses on two properties that various different wave phenomena have in common, the "e;nonlinearity"e; and "e;dispersion"e;, and explains them in a style that is easy to understand for first-time students.Both of these properties have important effects on wave phenomena. Nonlinearity, for example, makes the wave lean forward and leads to wave breaking, or enables waves with different wavenumber and frequency to interact with each other and exchange their energies.Dispersion, for example, sorts irregular waves containing various wavelengths into gentler wavetrains with almost uniform wavelengths as they propagate, or cause a difference between the propagation speeds of the wave waveform and the wave energy.Many phenomena are introduced and explained using water waves as an example, but this is just a tool to make it easier to draw physical images. Most of the phenomena introduced in this book are common to all nonlinear and dispersive waves.This book focuses on understanding the physical aspects of wave phenomena, and requires very little mathematical knowledge. The necessary minimum knowledges about Fourier analysis, perturbation method, dimensional analysis, the governing equations of water waves, etc. are provided in the text and appendices, so even second- or third-year undergraduate students will be able to fully understand the contents of the book and enjoy the fan of nonlinear wave phenomena without relying on other books.
Proteins and macromolecular structures represent one of the most important building blocks for a variety of biological processes. Their biological activity is performed in a dynamic fashion, hence the concepts of waves and vibrations can help to explain how proteins function. This book has the goal of highlighting the importance of wave and vibrational phenomena in the realm of proteins. It targets younger students as well as graduate researchers who work in various scientific fields and are interested in learning how mechanical vibrations affect and drive the biological activity of proteins and macromolecular structures. Great attention is given to the computational approaches dedicated to the evaluation of protein dynamics and biological behavior, and modern experimental techniques are addressed as well. The book is written in a way that non-experts in the field can grasp most of the presented subjects. However, it is also based on the most relevant and recent scientific literature, providing a rather comprehensive library for the reader eager to know more about specific topics.
Gravitational wave (GW) research is one of the most rapidly developing subfields in experimental physics today. The theoretical underpinnings of this endeavor trace to the discussions of the "e;speed of gravity"e; in the 18th century, but the modern understanding of this phenomena was not realized until the middle of the 20th century. The minuteness of the gravitational force means that the effects associated with GWs are vanishingly small. To detect the GWs produced by the most enormously energetic sources in the universe, humans had to build devices capable of measuring the tiniest amounts of forces and displacements.This book delves into the exploration of the basics of the theory of GW, their generation, propagation, and detection by various methods. It does not delve into the depths of Einstein's General Relativity, but instead discusses successively closer approximations to the full theory. As a result, the book should be accessible to an ambitious undergraduate student majoring in physics or engineering. It could be read concurrently with standard junior-level textbooks in classical mechanics, and electromagnetic theory.
This work is focusing on identifying the Factors Affecting Knowledge Sharing in a Government institution, works on Purchasing, Distributing and Maintenance of Electric Utilities to the Public solely. Based on the research¿s findings, Knowledge Sharing Framework was proposed, and other valuable recommendation were forwarded. The book cuddles a comprehensive concept, related to Knowledge Management, particularly about Knowledge Sharing Factors and a layered analysis, results and interpretation of results that span from Univariate to Multivariate one. Therefore, I hope it will add up something extra for the people who want to work in the same area, and for the people who wants to know about the area as well.
The book consists of papers on selected topics of dependability analysis in computer systems and networks which were discussed during the 17th DepCoS-RELCOMEX conference held in Wroclaw, Poland, from June 27th to July 1st, 2022. Their collection will be an interesting source material for scientists, researchers, practitioners and students who are dealing with design, analysis and engineering of computer systems and networks and must ensure their dependable operation.Being probably the most complex technical systems ever engineered by man (and also, the most dynamically evolving ones), organization of contemporary computer systems and networks cannot be interpreted only as a structure built on the base of unreliable technical resources. Their evaluation must take into account a unique blend of interacting people, networks (together with mobile properties, cloud organization, Internet of Everything, etc.) and a large number of users dispersed geographically and constantly producing an unconceivable number of applications. Research methods being continuously developed for dependability analyses apply newest results of artificial and computational intelligence. Selection of papers in this book illustrates broad range of topics, often multi-disciplinary, which is considered in present-day dependability explorations; it also reveals an increasing role of the latest methods based on machine/deep learning and neural networks in these studies.
This book features papers focusing on the implementation of new and future technologies, which were presented at the International Conference on New Technologies, Development and Application, held at the Academy of Science and Arts of Bosnia and Herzegovina in Sarajevo on 23rd¿25th June 2022. It covers a wide range of future technologies and technical disciplines, including complex systems such as industry 4.0; patents in industry 4.0; robotics; mechatronics systems; automation; manufacturing; cyber-physical and autonomous systems; sensors; networks; control, energy, renewable energy sources; automotive and biological systems; vehicular networking and connected vehicles; intelligent transport, effectiveness and logistics systems, smart grids, nonlinear systems, power, social and economic systems, education, IoT. The book New Technologies, Development and Application V is oriented towards Fourth Industrial Revolution ¿Industry 4.0¿, in which implementation will improve many aspects of human life in all segments and lead to changes in business paradigms and production models. Further, new business methods are emerging, transforming production systems, transport, delivery and consumption, which need to be monitored and implemented by every company involved in the global market.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.