Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book presents a state-of-the-art overview of the major aspects involved in the science, technology and applications of ceramics, glasses and glass-ceramics. After providing an historical perspective of the development and use of ceramics and glasses along the Silk Road, the theoretical background and fabrication techniques of such materials are described and discussed. A special focus is dedicated to emerging high-tech applications in various fields, including medicine, energy, optics and photonics, sensors, sustainability and circular economy. The chapters are written by leading experts in their respective fields and highlight the contemporary challenges associated to each topic. This book will serve as a valuable reference for both early-stage and skilled researchers as well as industry professionals interested in the broad field of glasses and ceramics.
The text explores the development, use, and effect of additive manufacturing and digital manufacturing technologies for diverse applications. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including industrial, manufacturing, and materials science.This book:Discusses the application of 3D virtual models to lasers, electron beams, and computer-controlled additive manufacturing machinesCovers applications of additive manufacturing in diverse areas including healthcare, electronics engineering, and production engineeringExplains the use of additive manufacturing for biocomposites and functionally graded materialsHighlights rapid manufacturing of metallic components using 3D printingIllustrates production and optimization of dental crowns using additive manufacturingThis book covers recent developments in manufacturing technology, such as additive manufacturing, 3D printing, rapid prototyping, production process operations, and manufacturing sustainability. The text further emphasizes the use of additive manufacturing for biocomposites and functionally graded materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, automotive engineering, aerospace engineering, and materials science.
This book summarizes many of the recent research accomplishments in the area of polyvinylchloride (PVC)-based blends and their preparation, characterization and applications. Various sub-topics are addressed, such as the state-of-the-art of PVC based blends, new challenges and opportunities, emphasis being given to the types and sizes of components/fillers and optimum compositions of PVC blends, their processing and structure-properties relationships, modification/compatibilization methods, and possible applications. PVC/thermoplastic based nano, micro and macro blends, PVC membranes, bio-based plasticizers and PVC blends with components from renewable resources are reported. The various chapters in this book are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe. It covers an up-to-date record on the major findings and observations in the field of PVC-based blends.
Nanocomposites-Advanced Materials for Energy and Environmental Aspects provides a brief introduction to metal oxides. The book then discusses novel fabrication methodologies and eco-friendly methods for using a broad range of metal oxide-based nanocomposites in innovative ways. Key aspects include fundamental characteristics of environmentally sustainable fabrication of materials for solar power, power generation and the textiles industries. Commercialization and economic aspects that are currently of major significance are also discussed in detail. The book represents an important information resource for material scientists and engineers to create the next generation of products and devices for energy and environmental applications. Metal and metal oxide-based nanocomposites are at the heart of some of the most exciting developments in the field of energy and environmental research. They have exceptional properties and are utilized in electronic and environmental sensing devices, for energy storage, electrode materials, fuel cells, membranes, and more.
The ?eld of ferroelectricity is a very active one. Many hundreds of papers in this ?eld are published each year and a large number of local and international conferences are held. We felt that it wouldbeappropriate at this time to publish a set of papers in a single journal describing some of the most active areas in the ?eld. The Journal of Materials Science agreed to publish a special issue on ferroelectricity. Accordingly, we sent requests for papers to a number of research groups around the world. It was diff?culttoselect a small number of groups from among the many excellent ones in the ?eld and we apologize to those not included. We received 24 manuscripts from groups in North America, Asia and Europe, each one of which was reviewed by two referees. The papers include reviews and current research, both experimental and theoretical. It was especially satisfying that the authors included not only established researchers but also manyyounger people who are destined to continue in the ?eld in the future. The special issue entitled "e;Frontiers of Ferroelectricity"e;appeared as Volume 41, Issue 1 of the Journal of Materials Science in January 2006. Because webelieved that many researchers and students would ?nd great value in having the complete set of papers on their bookshelf, we suggested to the editors of Springer that Frontiers of Ferroelectricity shouldbe published in book form.
This book is an introductory work on the broad topics included in Materials Science. It encompasses a number of different materials classes and properties with a focus on the structure-property relationships between them. Each class of materials will include and discuss recycling techniques and other green methods of production. Materials Chemistry: For Scientists and Engineers is ideal for all newcomers to the fi eld as well as for those seeking a knowledge of solid state chemistry.
This second edition adds newly established techniques and material properties codified in the past ten years to this authoritative reference. The volume retains its comprehensive coverage of damage and healing mechanics with updates to core topics and references and addition of other types of damages not covered in the first edition, including thermo-elastoviscoplastic damage-healing model for bituminous materials, damage in granular materials, damage in biological tissue, damage in rubber materials, damage crashworthiness in cars and airplanes, risk analysis in damaged structures, and evaluating damage with digital image correlation. The Handbook details computational modeling of constitutive equations as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employs a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. The Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures, second edition is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.
Materials Science and Fuel Technologies of Uranium and Plutonium Mixed Oxide offers a deep understanding of MOX properties for nuclear fuels that will be useful for performance evaluation. It also reviews fuel property simulation technology and an irradiation behavior model required for performance evaluation.
Wisdom is the principal thing; therefore get wisdom; and with all thy getting, get understanding. Proverbs 4:7 In the early chapters of the book of Proverbs there is a strong emphasis on three words: knowledge, understanding, and wisdom. Perhaps we can apply these words to our philosophy behind the technology of Predictive Process Control. Knowledge is the accumulation of information provided by education as we begin to store the data in our brains that should prepare us for the challenges of the manufacturing environment. It applies to every level and every opportunity of education, formal and informal. This is simply to Know, without any requirement except a good memory, and is the basis for the following two thoughts. Understanding is the assimilation of knowledge, or the thinking process, as we begin to arrange and rearrange the data we Know for quick recall as it may be needed. This also applies to every level and opportunity of education. It is Know-Why based upon what we Know, and it requires some scepticism of oversimplified answers and a hunger for mental consistency. Wisdom is the application of both knowledge and understanding in real life enterprises. As we apply both our knowledge and understanding in those situations, all three are further enhanced by each progressive experience. This is that wonderful Know-How - to apply our education based upon Know-why, which was based upon Knowledge - which provides the confidence we need to advance in all phases of performance.
Recent developments in advanced ceramics are critically evaluated in respect to their thermal shock and thermal fatigue behavior from an interdisciplinary viewpoint by leading experts. The book covers the aspects of material development, mechanical and fracture mechanical models and experimental testing methods. Special emphasis is given to the influence of a rising crack resistance on the thermal shock behavior, novel irradiation testing methods for a quantitative characterization of the thermal shock and fatigue loading as well as detailed fracture mechanical models for single and multiple crack propagation. This book summarizes developments of the last decade concerning the thermal shock and thermal fatigue behavior of advanced ceramics. The scientific articles of the book were carefully arranged in order to achieve a textbook-like form which will be of great value to researchers and students. (ABSTRACT) This book summarizes developments of the last decade concerning the thermal shock and thermal fatigue behavior of advanced ceramics. The book covers the aspects of material development, mechanical and fracture mechanical models and testing methods. The scientific articles were carefully arranged in order to achieve a textbook-like form which will be of great value to researchers and students.
Ceramic Catalysts: Materials, Strategies and Applications focuses on synthesis techniques and applications of ceramic materials in heterogenous catalysis. In order to enable an affordable, sustainable, low-carbon economy, research activities have been intensified in this area over recent years. The rapid accumulation of results has been evaluated and summarized by recognized experts working in their respective fields in the form of separate and complementary chapters. The first part of the book is dedicated to synthesis and catalytic applications of different categories of ceramics that include both porous ceramics and ceramic composites. Catalytic applications of ceramics mainly involving waste-water treatment, combustion reactions, and fine chemical synthesis are also discussed. Use of ceramics as catalyst supports is also given importance in the book. The book is intended to act as a valuable reference resource for both researchers and postgraduate students with key emphasis on the following areas of research: Recent techniques for the synthesis of different ceramics; specific characteristics of each type of ceramics for catalytic applications; different types of catalyzed reactions based on inherent chemical characteristics and sustainable technologies based on ceramic catalysts. The book will be an essential reference resource for industrial and academic researchers, materials scientists, chemists, and environmental scientists.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.