Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
In the continuous pursuit of optimizing performance, development of advanced materials with highly specific properties has consistently been a critical component of aerospace engineering’s research. Aerospace Materials: Novel Technologies and Practical Applications puts strong emphasis on updating existing knowledge of a wide range of functional and structural materials and contextualizing it for industrial practice.The volume not only comprehensively covers different classes of materials, while providing an overview of each material’s mechanical and physical properties, as well as processing and testing, but also offers state-of-the-art guidance on their commercial use in the sector. Furthermore, it looks ahead to clarify what’s still needed to adapt traditional and novel materials to ever-changing aerospace technologies and related pressing sustainability challenges.The breadth of technical expertise that this international group of researchers provides proves to be an invaluable asset for users in academia and established professionals alike.
Nanocarbon polymer biocomposites have gained increased attention from both researchers and manufacturers due to the significant improvement in their physico-mechanical, thermal and barrier properties when compared to conventional materials. Their dimensions, biodegradable character, cost-effectiveness, and sustainability are among the main drivers for increasing demand. However, it is difficult to achieve uniform dispersion between the carbon filler and matrix as it easily forms agglomerations. Production of nanocarbon polymer biocomposites with high mechanical and thermal properties is also limited, but there has been rapid progress in processing possibilities to produce nanocomposites based on various biodegradable fillers. Advanced Nanocarbon Polymer Biocomposites: Sustainability Towards Zero Biowaste collects all these novel scientific findings in one place. It discusses in detail their physical, chemical, and electrical properties and presents the latest research findings on nanocarbon polymer biocomposites with filler loadings and their improvement on compatibility. The book will be of great interest for those researchers who are concerned with the production and use of nanocarbon polymer biocomposites as a new innovative advanced material.
Applications of Composite Materials in Engineering provides an up-to-date review of recent application advancements in different engineering fields. The book concentrates on the availability and utilization of various fibers and reinforcements in composites and analyzes the suitability of them in different engineering and commercial applications. The latest research as well as possible application avenues for the future are discussed in detail.
Nanocomposites for Environmental, Energy and Agricultural Applications presents a comprehensive overview of recent developments and prospects for nanocomposites in sustainable/green energy production, water/wastewater treatment as well as crop production. Each chapter introduces the fundamental principles as well as the design and characterization of nanocomposites for various applications. This includes detailed discussions of nanocomposites technology, including mixed matrix membranes for water and gas separation, nanohybrid catalysts for organic pollutants degradation and sustainable energy production as well as advanced nanocomposites of different structural dimensions (0D, 1D, 2D and 3D) for agricultural utilization. The book also discusses the challenges of lab-based research towards industrial implementation and related case studies based on pilot and full-scale processes. At the end of each chapter, future opportunities for improvement will be provided to offer researchers a new research direction. The book will be a practical guide for researchers and scientists working in the fields of nanotechnology and nanomaterials science and technology.
Characterization Techniques for Bionanocomposites: Advances, Challenges, and Applications provides a detailed review of current techniques used for the characterization of bionanocomposites. The chapters cover physical, chemical, thermal, and electrical characterization techniques as well as spectroscopic and microscopic methods. There is also an entire section dedicated to biodegradability and biological characterization. With its numerous case studies and practical examples, researchers will find this book a valuable information resource that enables them to identify which specialized characterization tools can be applied to different materials for a broad range of biological, environmental, and industrial applications.
This collection covers innovations in the field of composite materials with a specific focus on eco-friendly and environmentally sustainable systems. All composite fields are explored, including polymer, metal, and ceramic matrix composites with an emphasis on sourcing raw materials in a sustainable way as well as the development of composite materials for environmental sustainability. Topics will include the development of new materials for structural applications, reduction in energy consumption, and increased component life along with discussions of novel methods to reuse existing materials. Additional topics include, but are not limited to:· Naturally Sourced Materials feedstock· Recycled Material feedstock, · Application of composite for reduced carbon footprint · Development of novel materials to repurpose waste from other areas
This book is intended to shed light on the computational modeling and experimental techniques that are used in the characterization of various polymer based composite materials. It covers mechanisms, salient features, formulations, important aspects, and case studies of polymer composite materials utilized for various applications. The latest research in this area as well as possible avenues of future research is also highlighted to encourage the researchers.
Polymers and Two-Dimensional Nanocomposites provides a detailed review of recent progress in this important research field. The chapters cover new developments in synthesis methods, fabrication techniques, sample preparation methods, surface modification, characterization, methods of enhancing the properties of these materials and industrial applications in energy, environmental, oil and gas, sensors, corrosion, biomedical and structural applications. The book provides a valuable reference resource for academic and industrial researchers, materials scientists and engineers working in the fields of polymer science and engineering, polymer composites and nanocomposites.
Sustainable Materials for Food Packaging and Preservation: Food Security and Sustainability discusses the recent trends and development of bio-based sustainable materials, focusing on their fabrication and application in food packaging and food preservation. This book brings together fundamental information and the most recent advances in the characterization, processing, and modification of sustainable materials and their impact on food packaging and storage of food products for improving their shelf life. Special attention is given to smart, active, and edible packaging, and the utilization of nanoemulsion and nanoencapsulation in the food industry is also discussed. In addition, the book reviews the use of proteins, polysaccharides, and microbial and chemically derived materials for food preservation.
Plant Tuber and Root-based Biocomposites: Development, Characterization, and Applications discusses the latest advances in this important research field. The book details novel tuber and root-based materials individually and covers their manufacturing, characterization, and applications. Emphasis is placed on the fundamental properties of these materials to address challenges and opportunities for industrial commercialization in the future. Various applications in food, medicine, textiles, biofuel, pulp, and paper-making industries, as well as bioenergy, packaging, and automotive, are covered.
Nonmetallic electroconductive textiles, unlike metals, offer flexibility, durability, moldability, and lightweight attributes. A brilliant quality of these textiles is the capability to alter conductivity through various external stimuli (e.g., strain, torsion, pH, humidity) to suit a specific application such as sensors, heating garments, EMI shielding, energy harvesting devices, and wearable electronics. Based on these concepts, Advances in Electrically Conductive Textiles: Materials, Characterization, and Applications has been structured into three main sections. Section I contains chapters discussing the various preparation methods of electroconductive textiles, Section II contains chapters on their characteristics and features, and Section III details the end-use applications and sustainability of these textiles.
Developments in Yarn Spinning Technologies explores the recent advancements in yarn spinning technologies, focusing on improving production and embracing sustainability. While ring spinning remains popular, newer developments in rotor spinning and natural fibre spinning systems are covered.This book also addresses challenges, including the circularity theory, providing concise insights into the evolving landscape of yarn spinning technologies. Ideal for professionals and researchers alike, this book offers valuable perspectives on the industry’s dynamic changes.
Polymer Gears discusses polymer gear design and their efficient mechanical properties, light weight, and low noise during operation. As plastic gears are replacing metallic gears in traditional and new applications, there is still lack of material characterization and complex relations between different geometric and operating parameters. Thus, polymer gear design remains an open challenge. This book serves as a comprehensive and professional guide on the topic, providing readers with current developments carried out in the field of plastic gears production, characterization, and applications. This will include material development, tribological properties, simulations, and processing methods.
Char-based Composites: Production, Characterization, Limitations and Emerging Applications provides the reader with a wide spectrum of information on char and biochar-based composites. Emphasis is placed on their production, characterization, applications, and limitations towards commercialization. The book's chapters concentrate on char/biochar as nanofillers in composite materials which are currently used in various advanced technologies including nanotechnology, environmental sectors (gas cleaning and wastewater treatments), energy storage, and solid fuel and catalysts.This book will be a valuable reference resource for academic and industrial researchers, as well as biotechnologists working in the development of advanced char and biochar-based composite materials.
Polymers for Oral Drug Delivery Technologies covers the fundamentals of oral drug delivery and various aspects of polymer technology in oral drug delivery, from classification and synthesis, to applications and regulatory factors. It presents the oral delivery¿of therapeutics for treating a number of diseases, along with the challenges of oral drug administration to assure a predictive and reproducible pharmacokinetic profile of active pharmaceutical ingredients (API).Polymers play an important role to achieve the targeted release profile consistently of an API in vivo by various functionalities like drug protection from gastric juice, fast release and supersaturation or release within a targeted area of the GI tract.
This book is a useful source of knowledge for engineers and scientists in the field of mechanics of deformation and destruction of composite materials.In Chapter 1 three-dimensional equations of elasticity theory composed for the case of finite displacements and deformations of solids have been analyzed. It is found that the generally accepted simplifications known in the literature and carried out for the case of small deformations result in equations that are considered to be absolutely correct and consistent in all scientific and educational literature on mechanics of deformable solid bodies. However, this conclusion is not sufficiently well-founded as confirmed by formulation and solution of problems on the basis of generally accepted equations for determining both the stress-strain state (SSS) and the critical loads and buckling modes. In Chapter 2 the theoretical and experimental methods for determining the mechanical characteristics of fiber-reinforced plastics (FRPs) based on tensile and compression tests of flat specimens with [0]s , [±90]s, and [±45]2s lay-ups are analyzed. For FRPs with [±45]2s lay-ups, relations are derived for determining the components of lamina strains and stresses in the orthotropy axes of FRP monolayer in terms of axial strains and Poisson ratios of specimens measured in experiments. In Chapter 3 the structure of a unidirectional fibre composite of two types ELUR-P carbon fibre based on KhT-118 cold-curing binder and HSE 180 REM prepreg based on hot-curing binder has been studied. The diameters of fibres and fibre bundles (filaments) of both types of composites have been measured. Based on the results of the analysis of the composite material structure, a refined formulation of the linearised problems of a refined statement of linearized problems on flat internal multiscale buckling modes of a rigid lamina with either fibers or a fiber bundle is presented taking into account their interaction with an epoxy matrix. In Chapter 4 for shells of a layered structure based on the Timoshenkös model, taking into account the transverse compression used for each layer, two versions of two-dimensional equations are constructed that describe geometrically nonlinear deformation with arbitrary displacements and small deformations. The formulation of a linear problem on the initial (subcritical) stress-strain state of a test specimen from a unidirectional fibrous composite with the [900]s structure during tension-compression tests with shear is given. A numerical method for solving the formulated problem is developed, which is based on the reduction of the original problem to a system of integro-algebraic equations and the search for their numerical solution by the finite sum method. In Chapter 5 conclusions were done and directions for further research have been identified.
This book offers a comprehensive and in-depth exploration of the most widely used test methods for characterizing the deformation and failure behavior of materials. It presents a thorough treatise on mechanical testing, providing a valuable resource for researchers, engineers, and students seeking to understand the mechanical properties and performance of materials across various applications. The book is organized into ten chapters dedicated to specific test methods including tensile, compression, bending, torsion, multiaxial, indentation, fracture, fatigue, creep, high strain rates, nondestructive evaluation, ensuring a thorough examination of each technique's principles, procedures, and applications. It features two special chapters focusing specifically on the mechanical characterization of concrete and fiber composite materials. These chapters delve into the unique aspects and challenges associated with testing and analyzing these specific materials.
In today's society researchers are more focused on cleaner materials production for environmental sustainability. This approach aims at reducing waste and the development of materials with enhanced properties and functionality. This book focuses on optimizing manufacturing processes for sustainable composite materials. It discusses optimum utilization of resources by using minimum effort to save cost and energy.
The book focuses on the recent technology and advancement in structural integrity and monitoring systems in composite materials. Composites have been widely used in automotive, aerospace and wind turbine industries, therefore it is important to develop state of the art technology to monitor and manage the damage tolerance and durability. This book explores the challenge of a monitoring system in a composite and presents a real-time system which has advantages for damage detection, damage localization, damage assessment and life prediction compared to the Non-Destructive Testing (NDT). It will also present the modelling and prediction of failure in a composite material based on computational analysis of the characteristics and properties of the composite material based on fiber and matrix properties. This book will benefit lecturers, students, researchers, engineers and industrialist who are working in the civil, mechanical engineering, automotive, aerospace and wind turbine industries.
Flexible devices based on metal oxides: Achievements and prospects focuses on the integration of flexibility in electronic circuitry, sensing applications, energy conversion and storage, and environmental remediation. Flexibility in these applications offers great potential, especially in the areas of wearable sensors, solar cells, transistors, electronic skin, and human body monitoring. The book investigates flexible and wearable devices based on metal oxide nanostructures or thin films that are capable of bending, rolling, compression, and folding, all while maintaining their performance. Metal oxide nanomaterials display exceptional properties that include mechanical stress tolerance, high optical transparency, high carrier mobilities, wide band gap, high dielectric constant, and superconductivity, amongst others. In some cases, they are also earth abundant, environmentally benign, cost-effective, chemically stable, and compatible with low-cost wet-chemical synthesis routes. The focus of the book is on wearables manufactured using sustainable manufacturing methods and integrated into substrates that are flexible, inexpensive, recyclable, abundant, and lightweight, including polymer, textile, cellulose and cork substrates.
Rubber Composites: Recycling, Processing, Properties, Design and Applications provides an extensive review of recent advances in this important research field. The book's chapters cover the processing, structure, properties, and applications of rubber-based composites, which are versatile materials, that with the appropriate design planning, manufacturing process, and properties can be tailored to meet specific industrial requirements with enhanced performance and sustainability. This book will be a valuable reference source for academic and industrial researchers, materials scientists and engineers, polymer chemists, and industrial manufacturers working in the research and development of rubber-based composites.
Finite Element Analysis of Polymers and its Composites offers up-to-date and significant findings on the finite element analysis of polymers and its composite materials. It is important to point out that to date there are no books that have been published on this concept. Thus, academicians, researchers, scientists, engineers, and students in the similar field will benefit from this highly applications-oriented book that summarizes the experimental, mathematical, and numerical analysis of polymers and composite materials through the finite element method. The book provides detailed and comprehensive information on mechanical properties, fatigue and creep behavior, thermal behavior, vibrational analysis, testing methods, and their modeling techniques. In addition, the book lists the main industrial sectors in which polymers and composite materials simulation is used, and their gains from it, including aeronautics, medical, aerospace, automotive, naval, energy, civil, sports, manufacturing, and even electronics.
Basalt fiber possesses many superior properties, such as excellent mechanical properties, high resistance to the chemical, temperature and environmental attacks, and outstanding electrical and sound insulation. In addition, it is cost-effective and environmentally friendly because the raw materials are widely found in nature and the fiber can be discarded into the environment without any negative effect. Basalt fiber has attracted great attention as reinforcement for composites in recent years, and developed materials have been extensively used in transportation, automobile, aerospace, and civil engineering.Despite its many attractive attributes, and the contributions of basalt fiber, there are still numerous challenges to be addressed in terms of preparation, properties, and application. In addition, some of the merits of this high-performance fiber reported in the literature are usually inconsistent and incomplete, where intuition often prevails over rationality.High Performance Basalt Fiber: Fundamentals and Applications provides a comprehensive and systematic review of the latest developments in this important research field. It offers a complete and thorough analysis of the correlation between the structure and properties of basalt fiber, as well as key methods and technologies for the preparation and application of this fiber and it related composites. There is also a detailed overview of the history of basalt fiber, as well functionalization and recent state-of-art progress on basalt fiber and its corresponding composites. The book will thus fill a gap in the field, in terms of not only covering the theory but more importantly the latest technologies.
Advances in Functionalized Polymer Nanocomposites: From Synthesis to Applications presents a detailed review on the synthesis, fundamental chemistry, properties, and applications of these high-performance materials. The book's introductory chapter provides a brief overview of the various types of organic and inorganic nanofillers used for the synthesis of polymer nanocomposites. Emphasis is placed on their fundamental chemistry, processing methods, functionalization, and/or surface modification strategies. The dispersion state and their specific interaction with polymer matrices is also discussed in detail, as well as characterization techniques for functionalized nanofillers and functionalized polymer nanocomposites, and their properties, and applications.The book will be a valuable reference source for scientists, engineers, and postgraduate students working in the field of polymer science and technology, materials science and engineering, composites, and nanocomposites.
This book covers the challenges and opportunities presented by plastics in the modern era and sheds light on the complex interplay of technology, environment, and socio-economic dynamics. With a thorough exploration of the history, uses, and potential of plastics, the book reviews the impact of plastics beyond single-use plastics, and critiques multiple long-term plastic applications that are significant for food security, water resource management, ecological conservation/restoration, and sustainable urbanization. It also explores frameworks for achieving a more sustainable plastic economy aligned with sustainable development goals.This book comprises 13 chapters, commencing with a critical assessment of plastics in the context of sustainable development and global society. It proceeds with a historical overview of plastics' evolution, showcasing pivotal milestones and innovations in modern industry and daily life. Subsequent chapters delve into diverse topics: the intricate relationships between plastics, food security, and sustainable urbanization; plastics' impact on water safety, management, distribution, and conservation; their potential as an alternative energy source; and their innovative applications in sustainable transportation and energy generation. Emphasis is placed on plastics' role in waste reduction and recycling, as well as the latest sustainable alternatives like biodegradable and recyclable materials. In the book's final sections, readers will learn about green buildings and climate-resilient cities constructed using innovative plastic materials, and plastics' significance in space exploration. The book concludes with a forward-looking perspective on plastics' future, accompanied by recommendations for a more sustainable coexistence between society and these versatile materials.This book is a valuable resource for researchers, policymakers, industry professionals, and concerned citizens seeking to navigate the intricate landscape of plastics, their environmental implications, and their potential for sustainable development.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.