Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Sustainable Fillers/Plasticizers for Polymer Composites: Promising Resources presents a comprehensive review of the application and use of biofillers and bioplasticizers for the fabrication of biopolymer-based composites. This book looks first at the historical aspects and then goes on to discuss current trends and recent developments. Emphasis is placed on the future potential of these resources to expand their usage in a broad range of different applications. This book will be a valuable reference resource for both academic and industrial researchers working in materials science, polymer chemistry and engineering, and the manufacturing of polymer composite materials.
This book elucidates the peculiar phenomenon of entropy/enthalpy compensation that takes place in high performance liquid chromatography (HPLC) of polymers. Numerous publications, including some books, are devoted to molecular characterization of synthetic polymers, materials presently produced in large and steadily growing quantities, applying methods of HPLC. A knowledge of the molecular characteristics of polymers is indispensable, not only for their proper applications but also for their recycling and remediation. Polymer scientists generally focus on synthesis and potential applications of polymers while not giving due attention to an important central link, their comprehensive characterization in context of development of structure-property correlations. To fill this gap is one of the aims of the present book. The process of entropy/enthalpy compensation plays a decisive role in the advanced method of polymer characterization such as liquid chromatography at critical conditions, eluent gradient interaction chromatography, and temperature gradient interaction chromatography. All chemists working on any aspect of polymer science will find this book a valuable resource for the development of structure-property correlations.
Bio-Based and Bio-Inspired Pavement Construction Materials explores the role of materials in carbon management, performance enhancement, and supply chain management in pavement construction. It presents various production techniques, experimental characterization methods, applications, numerical modeling, and simulation approaches for bio-based and bio-inspired pavement construction materials. The book demonstrates how bio-based and bio-inspired materials can be used in pavements to solve problems related to sustainability while simultaneously enhancing the mechanical properties of materials. Supply chain management, life-cycle analysis, and environmental assessment of using these materials are all covered in this volume as well.
This book provides an overview of the initiation of combustion processes of polymeric materials. It presents physicochemical processes associated with heating as well as numerical methods for initiation parameter calculation. In addition, the book describes thermal degradation of polymers and the effect of an incident heat flux on initiation time. It then highlights the most commonly used devices for measuring the time to ignition using external heat sources. The target group of this book are scientists and researchers dealing with materials combustion and also graduates and practitioners focused on fire protection.
The novel finite element formulations fall into the category of geometrically exact Kirchhoff-Love beams. A prominent characteristic of this category is that the absence of shear deformation is strongly enforced by removing two degrees of freedom. Further, the corresponding beam theories exhibit not only translational but also rotational degrees of freedom and their configurations thus form a non-additive and non-commutative space. Sophisticated interpolation schemes are required that need to be tested not only for locking, spatial convergence behavior, and energy conservation, but also for observer invariance and path-independence. For the three novel beam element formulations all these properties are analytically and numerically studied and confirmed, if applicable. Two different rotation parameterization strategies are employed based on the well-known geodesic interpolation used in many Simo-Reissner beams and the lesser known split into the so-called \textit{smallest rotation} and a torsional part. Application of the former parameterization results in a mixed finite element formulation intrinsically free of locking phenomena. Additionally, the first geometrically exact Kirchhoff-Love beam element is presented, which strongly enforces inextensibility by removing another degree of freedom. Furthermore, the numerical efficiency of the new beam formulations is compared to other beam elements that allow for or suppress shear deformation. When modeling very slender beams, the new elements offer distinct numerical advantages.Standard molecular dynamics simulations, which are commonly used to study polymers, suffer from a lack of a careful mathematical basis and the use of an expensive explicit time integration scheme. To circumvent these shortcomings and to be able to simulate stretching experiments on relevant time scales, the problem is described by a stochastic partial differential equation, which can be solved using the finite element method with a backward Euler temporal discretization. In detail, the polymer is represented by a Kirchhoff-Love beam with a linear elastic constitutive model. Inertial and electrostatic forces are neglected. It is deformed by a distributed load mimicking collisions with molecules of the surrounding fluid. Naturally, this load heavily fluctuates over time and space and mean values need to be computed in a Monte Carlo manner. To vastly speed up the fitting process to experimental data in a Bayesian framework, a surrogate model based on a Gaussian process is set up, which directly computes the mean values for given material parameters. The uncertainties and correlations of the material parameters are studied and compared to the literature.
This book provides cutting-edge, up-to-date research findings on the use of bionanocomposites in biodegradable and environmental applications, while also detailing how to achieve bionanocomposites preparation, characteristics, and significant enhancements in physical, chemical, mechanical, thermal properties and applications. This book on biodegradable and environmental properties of bionanocomposites provides a comprehensive and updated review of major innovations in the field of polymer-based bionanocomposites for biodegradable and environmental applications. It covers properties and applications, including the synthesis of polymer-based bionanocomposites from different sources biomaterials-based composites and tactics on the efficacy and major challenges associated with successful scale-up fabrication on bionanocomposites.It is an essential reference for future research in bionanocomposites as topics such as sustainable, biodegradable, and environmental methods for highly innovative and applied materials are current topics of importance. The book covers a wide range of research on bionanocomposite and their biodegradable and environmental applications. Updates on the most relevant polymer-based bionanocomposite and their prodigious potential in the fields of biodegradable and the environment are presented. Leading researchers from industry, academy, government, and private research institutions across the globe contribute to this book. Scientists, engineers, and students with interest in the most important advancements in the field of bionanocomposites involving high-performance bionanocomposites will benefit from this book which is highly application-oriented.
"Sustainable Packaging Materials" provides a concise introduction to the principles and practices of packaging sustainability. It addresses the important issues that concern packaging professionals, decision makers, managers, CTOs, legislators, researchers, and students, including the viability and future of recycling, bio- and oxo-degradable materials, and plastics alternatives such as paper, glass, and metal. Also covered are new regulations such as the extended producer responsibility (EPR) laws, their consequences as to what materials are likely to be banned, and whether microplastics should be a concern for packaging companies.Written by an experienced professor, educator, author, inventor, and entrepreneur, this book offers uniquely clear answers to these challenges, helping readers to identify packaging materials that are likely to be phased out to meet new regulations, and to find alternatives to benefit their research and businesses. They will also be equipped to follow guidelines on the use of various packaging materials to stay ahead of the demands of the industry, and to make informed choices about packaging materials by considering sustainability, performance, and cost. Furthermore, they will be informed of the emerging packaging trends in both academia and industry, and understand the issues associated with microplastic pollution, and the actions recommended to mitigate these challenges.
Das Ziel des Forschungsvorhabens war die Entwicklung feintitriger Garne aus Hochleistungsthermoplasten mit produktspezifischem mechanischem und thermomechanischem Verhalten und der Nachweis deren Verarbeitung in der textilen Produktionskette. Bei den Garneigenschaften stand insbesondere die Faserfestigkeit, mit einem Zielwert > 50 cN/tex und der variabel einstellbare Faserschrumpf im Vordergrund, um verschiedenste Anwendungsfelder bedienen zu können.Nach der Festlegung auf den Hochleistungsthermoplasten PEEK wurden zunächst Referenzgarne aus kommerziellen PEEK-Typen hergestellt und im Anschluss über den Prozess des Blendens mit hochmolekularen PEEK-Typen das Materialverhalten der Ausgangpolymere angepasst und dessen Einfluss auf das Spinnverhalten und die resultierenden Fasereigenschaften bewertet. Dabei stellte sich heraus, dass alle Anforderungen an die mechanischen Eigenschaften erfüllt werden konnten, jedoch der positive Einfluss auf den thermomechanischen Schrumpf nicht gegeben war, wodurch die variable Schrumpfeinstellung nicht gegeben war.Die entwickelten Garne zeigten dennoch das Potential als Stick-, Näh- oder Wirkfaden eingesetzt werden zu können und in der Herstellung auf einen industriellen Maßstab skalierbar zu sein.Somit wurde das Ziel des Forschungsvorhabens teilweise erreicht.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.