Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Diese umfassende, praxisgerechte und verstandliche Darstellung der Werkstoffkunde liegt nach Uberarbeitung der Normenbezuge aktualisiert wieder vor. Bewahrt wie beliebt ist dieses Lehrbuch ganzlich unerlalich fur jeden, der auf ein solides Grundlagenwissen in den Werkstoffwissenschaften nicht verzichten kann. Idee dieses Buches ist es, stets aufs Neue deutlich zu machen, da es nur wenige grundlegende Tatsachen und Vorgange sind, die die Eigenschaften eines Werkstoffes bestimmen. Der Inhalt ist gut strukturiert, viele Abbildungen erleichtern das Verstandnis. Die Autoren beschreiben umfassend, aber dennoch straff, die notwendigen Grundlagen. Das Kapitel "e;Kunststoffe"e; wurde erganzt und aktualisiert.Dieses Buch richtet sich an Ingenieure und Studenten, vorwiegend der Fachrichtungen Maschinenbau, Elektrotechnik oder verwandter Richtungen, sowie an Leser nichttechnischer Fachrichtungen, denen an einem schnellen Einblick in die Werkstoffkunde gelegen ist.
A detailed presentation of the physics of the various hysteresis models that are currently used to explain the magnetization reversal process, including coherent and incoherent magnetization processes, micromagnetism and its application in thin films, multilayers, nanowires, particles and bulk magnets, domain wall pinning and domain wall dynamics, and Preisach modelling. Some of the faulty concepts and interpretations that still exist in the literature are rectified. Magnetic imaging techniques are reviewed, including TEM, SEM, magnetic force microscopy, and optical microscopy. Temperature, field and angular dependence of coercivity, magnetic interactions and magnetic phenomena are reviewed and their effect on magnetic hysteresis is discussed. The magnetic properties of novel materials are discussed, including nanoparticles, nanocrystalline granular solids, particulate media, thin films, and bulk magnets. Finally, present and future applications of novel materials are presented, including magnetic and magneto-optic recording media, magneto-electronics, sensors, magnetic circuit design, and novel structures created from rigid, high-energy permanent magnets.
Non-Destructive Testing (NDT) techniques for the inspection of industrial structural components have to be qualified in respect to the minimum performance to be achieved. The qualification schemes relate to all aspects of the tests: procedure, equipment and personnel and the qualification of inspection should be codified in Standards. Such Standards are of two main types: those that detail the methods and procedures to be used and those that define the results which must be achieved. The European Network for Inspection Qualification (ENIQ) has as its aim the creation of a European collaboration for critical studies, assessment and qualification of inspection procedures for industrial structural components. The final goal is to support international Codes and Standards bodies via technical tools, expertise and demonstrative exercises that can be sponsored and managed at the European level.
The problem of developing metal matrix (MCM) and metal-polymer (MPCM) composite materials is one of the most important in present day materials technology, for its solution is pivotal to the development of a number of leading technologies. The development of new fibrous and lamellar composite materials with improved physico-chemical, electrical, thermal and other properties is a springboard for qualitative scientific and technological advances not only in aerospace and shipbuilding technologies, but also in mechanical, power, electronic, electrical, radio engineering, transport, construction and other industries. The volume reviews the results of research programmes ac complished in recent years by Soviet scientists in the development of composite materials based on aluminium and magnesium matrices, polymatrix composites (composite materials) with metal and polymeric matrices reinforced with boron and carbon fibres, steel wire, fibre glass and other fillers. The volume also reviews present-day physico-chemical fundamen tals and basic principles for developing and optimizing metal matrix composites, and describes the most expedient and efficient methods of MCM and MPCM manufacturing. Special attention is devoted to the issue of manufacturing MCM structural members, and their machin ing and plastic working, as well as to coupling techniques.
This book contains most, but regrettably not all, the papers that were presented at the Advanced Research Study Institute, ASI, held at the Fantasia Hotel, Kusadasi, Turkey, July 26 - August 8, 1998. A powerful incentive to the development of vortex physics in superconductors, that has began with Abrikosov Vortices in Shubnikov's Mixed State, was realized after the discovery of the high-Tc superconductivity. Indeed, a number of the most intriguing phenomena and states of the flux line lattice are observed in high-Tc superconducting materials due to their high anisotropy, intrinsically layered crys tal structure, extremely small coherence length and the possibility of coexistence of superconducting vortex states with high-energy thermal fluctuation. These pe culiarities are demonstrated as the 2D flux line lattice of point-vortices (pan cakes), Josephson vortices or strings in parallel and/or tilted magnetic fields, flux line lattice melting into vortex liquid and its freezing into vortex "solid" (e. g. , crystal-or glass-like) state. It is well known, that the main reason for conditioning of the vortex ensemble state and behavior (except the extrinsic factors, such as applied magnetic field or temperature) is a set of intrinsic/extrinsic superconduct ing material properties caused by the crystal nature and symmetry, atoms ar rangement, anisotropy, as well as by the spectrum of crystal defects, their dimen sions, arrangement and density.
This volume presents the proceedings of an international symposium co-sponsored by the History of Chemistry, Polymer, Material Science and Engineering, Polymer Chemistry and Cellulose, Paper and Textile Division of the American Chemical Society on the history of manmade fibres at its 201st national annual meeting in Atlanta in 1991. It contains chapters on a wide range of fibres both from an historical perspective and with a view to outlining new materials and novel uses.
This highly detailed handbook is a resource for those entering the field of stress analysis and instrumentation. The authors were brought together to provide their expert experience and have presented many practical solutions.
This volume provides production and mechanical engineers with a wide-ranging account of the techniques of machining that have been developed to deal with new materials. These include polymers, hard metals and ceramics, which are difficult to treat by conventional methods either because of the hardness of components or the high accuracies of machining required.
An assessment of the recent achievements and relative strengths of two developing techniques for characterising surfaces at the nanometer scale: (i) local probe methods, including scanning tunnelling microscopy and its derivatives; and (ii) nanoscale photoemission and absorption spectroscopy for chemical analysis. The keynote lectures were delivered by some of the world's best scientists in the field and some of the topics covered include: (1) The possible application of STM in atomically resolved chemical analysis. (2) The principles of scanning force/friction and scanning near-field optical microscopes. (3) The scanning photoemission electron microscopes built at ELETTRA and SRRC, with a description of synchrotron radiation microscopy. (4) Recent progress in the development of spatially-resolved photoelectron microscopy, especially the use of zone plate photon optics. (5) The present status of non-scanning photoemission microscopy with slow electrons. (6) the BESSY 2 project for a non-scanning photoelectron microscope with electron optics. (7) Spatially-resolved in situ reaction studies of chemical waves and oscillatory phenomena with the UV photoemission microscope.
The development of photosensitive materials in general and photoreactive polymers in particular is responsible for major advances in the information, imaging, and electronic industries. Computer parts manufacturing, information storage, and book and magazine publishing all depend on photoreactive polymer systems. The photo-and radiation-induced processes in polymers are also active areas of research. New information on the preparation and properties of com mercially available photosensitive systems is constantly being acquired. The recent demand for environmentally safe solvent-free and water-soluble materials also motivated changes in the composition of photopolymers and photoresists. The interest in holographic recording media for head-up displays, light scanners, and data recording stimulated development of reconfigurable and visible light sensitive materials. Photoconductive polymerizable coatings are being tested in electrostatic proofing and color printing. The list of available initiators, poly meric binders, and other coating ingredients is continually evolving to respond to the requirements of low component loss (low diffusivity) and the high rate of photochemical reactions.
This book by Kaplan and Vekhter brings together the molecular world of the chemist with the condensed matter world of the physicist. Prior to the collapse of the Soviet Union, chemists in the West devoted lit to relationships between molecular electronic structure and tle attention solid-state vibronic phenomena. Treating quantum mechanical problems wherein the adiabatic Born-Oppenheimer approximation fails was done by "brute force. " With bigger and better computers available in the West, molecular orbital calculations were done on observed and conceived static structures with little concern for any cooperativity of vibrational behavior that might connect these states. While it had long been understood in the West that situations do occur in which different static structures are found for molecules that have identical or nearly identical electronic structures, little attention had been paid to understanding the vibrational states that could connect such structures. It was easier to calculate the electronic structure observed with several possible distortions than to focus on ways to couple electronic and vibrational behavior. In the former Soviet Union, computational power was not as acces sible as in the West. Much greater attention, therefore, was devoted to conserving computational time by considering fundamental ways to han dle the vibrational connectivity between degenerate or nearly degenerate electronic states.
In 1992 Acoustic Microscopy was published by Oxford University Press, in the series of Monographs on the Physics and Chemistry of Materials. Reviews appeared in the Journal of Microscopy [169 (1), 91] and in Contemporary Physics [33 (4), 296]. At the time of going to press, it seemed that the field of acoustic microscopy had settled down from the wonderful developments in resolution that had been seen in the late seventies and the early eighties and from the no less exciting developments in quantitative elastic measurements that had followed. One reviewer wrote, "e;The time is ripe for such a book, now that the expansion of the subject has perceptively slowed after it was detonated by Lemons and Quate. "e; [A. Howie, Proc. RMS 27 (4), 280]. In many ways, this remains true. The basic design for both imaging and quantitative instruments is well-established; the upper frequency for routine imaging is the 2 GHz established by the Ernst Leitz scanning acoustic microscope (ELSAM) in 1984. For the most accurate V(z) measurements, the 225-MHz line-focus-beam lens, developed at Tohoku Univer- sity a little before then, remains standard. The principles of the contrast theory have been confirmed by abundant experience; in particular the role of surface acoustic waves, such as Rayleigh waves, dominates the contrast in most high- resolution studies of many materials.
Micro/nanotribology as a field is concerned with experimental and theoretical investigations of processes ranging from atomic and molecular scales to the microscale, occurring during adhesion, friction, wear, and thin-film lubrication at sliding surfaces. As a field it is truly interdisciplinary, but this confronts the would-be entrant with the difficulty of becoming familiar with the basic theories and applications: the area is not covered in any undergraduate or graduate scientific curriculum. The present work commences with a history of tribology and micro/nanotribology, followed by discussions of instrumentation, basic theories of friction, wear and lubrication on nano- to microscales, and their industrial applications. A variety of research instruments are covered, including a variety of scanning probe microscopes and surface force apparatus. Experimental research and modelling are expertly dealt with, the emphasis throughout being applied aspects.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.