Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Studierende und interessierte Leser/innen erhalten eine Einführung in die Mechanismen der Energiewirtschaft. Dies beginnt mit den Rohstoffressourcen, deren Verfügbarkeit und der Preisbildung. Szenarien der weltweiten Energieversorgung führen zu nationalen Betrachtungen der Märkte für Öl, Erdgas, Braunkohle, Steinkohle sowie Elektrizität und der wachsenden Bedeutung erneuerbarer Energien. Zahlreiche Grafiken und Schaubilder veranschaulichen die Zusammenhänge und Wirkungen. Besonderheiten, bemerkenswerte Sachverhalte oder aus der Sicht der Praxis besonders relevante Fragestellungen sind im Text besonders gekennzeichnet. Der Autor bringt eine umfangreiche Praxiserfahrung mit, die er in dieses Buch einfließen lässt.
The future of the distributed energy generation market is promising, with opportunities in the residential, commercial, and industrial sectors driven by increasing awareness of clean energy, greenhouse gas (GHG) emission reduction targets, and rising global demand for energy. This book focuses on UN Sustainable Development Goal 7, which aims to "ensure access to affordable, reliable, sustainable, and modern energy for all." It provides research results, applications, and case studies on the potential of distributed energy resources as a solution to building a low-carbon society. Coverage includes modeling and evaluation of distributed power systems, system maintenance and reliability, economic potential and implications of hydrogen energy systems, grid stabilization and carbon emission reduction, smart design, and the impact of energy penetration on public power grids. Case studies include the effects of renewable energy policies on solar photovoltaic energy in China, Germany, Japan, and the United States of America and a feasibility assessment of distributed energy systems in Shanghai. Distributed Energy Resources: Solutions for a Low Carbon Society will be a valuable resource for postgraduate students and researchers in energy systems, urban energy management, and renewable energy technologies and a reference guide for practicing engineers, urban energy planners, and energy system managers.
This book introduces the working principle, materials, and design of seawater batteries and reviews the current state-of-the-art technologies in cells and modules.This book looks at the characteristics of seawater, then reviews the basic electrochemical processes involved in the storage of electrical charge in seawater batteries, and then discusses the development of anode, cathode, and membrane materials, and cell engineering progress. In particular, Chapter 3 contains the latest research and development results for rechargeable seawater batteries. The book has been written for a broad readership including graduate students, academic and industrial researchers working on sustainable, low-cost energy.
Written and edited by a team of experts in the field, this second volume in a two-volume set focuses on an interdisciplinary perspective on the financial, environmental, and other benefits of smart grid technologies and solutions for smart cities. This second volume in this groundbreaking two-volume set continues the authors' and editors' mission to present the concepts and best practices of smart grids and how they can be utilized within the framework of a technological tapestry to create smart cities. Continuing to go through the challenges and their practical solutions, this second volume includes chapters on waste management, e-waste, automotive and transportation engineering, and how internet-of-things can be utilized within these "smart" technologies, and many others. Like its predecessor, this exciting new volume covers all of these technologies, including the basic concepts and the problems and solutions involved with practical applications in the real world. Whether for the veteran engineer or scientist, the student, or a manager or other technician working in the field, this volume is a must-have for any library.
Power converters are vital for clean power, and so is their control. This book covers recent advances in converter control, comparing control methods for different converters. Chapters present control of DC-DC and AC-DC converters, for example using sliding mode and robust control.
Offering a comprehensive and structured overview of deploying energy storage for renewables in urban areas, this book covers grid resilience, EV usage and charging infrastructure, standards and grid codes, monitoring and power quality, hosting capacity, intelligent electricity markets, and integrated operation.
AI-Powered IoT in the Energy Industry: Digital Technology and Sustainable Energy Systems looks at opportunities to employ cutting-edge applications of artificial intelligence (AI), the Internet of Things (IoT), and Machine Learning (ML) in designing and modeling energy and renewable energy systems. The book's main objectives are to demonstrate how big data can help with energy efficiency and demand reduction, increase the usage of renewable energy sources, and assist in transitioning from a centralized system to a distributed, efficient, and embedded energy system. Contributions cover the fundamentals of the renewable energy sector, including solar, wind, biomass, and hydrogen, as well as building services and power generation systems. Chapters also examine renewable energy property prediction methods and discuss AI and IoT prediction models for biomass thermal properties.¿Covers renewable energy sector fundamentals;Explains the application of big data in distributed energy domains;Discusses AI and IoT prediction methods and models.
This book will cover all the major ion-battery groups and their electrolytes. It is suitable for all levels of students and researchers who want to understand the fundamentals and future challenges of developing electrolytes.
This book presents an overview of geothermal heating systems using ground source heat pumps in different countries. It evaluates the emissions and energy costs generated by the operation of low enthalpy geothermal systems, with heat pumps fed by different energy sources, and assesses, from an international point of view, those policies whose aim is a sustainable, low-carbon economy.The use of low-impact energy sources is gradually growing with the aim of reducing greenhouse gases emission and air pollution. The alternatives offered by geothermal systems are one of the key solutions for a future renewable development, enabling the electrification of heating systems and the use of biofuels.The book will be of interest to energy professionals and researchers.
This book presents an improved Field-oriented control strategy, for optimal proportional-integral (PI) parameters for robust stability, faster dynamic response, and higher efficiency in flux-weakening region for Permanent magnet synchronous motors. Combined design of a PI current regulator and a varying switching frequency PWM is presented.
Heating and Cooling of Air Through Coils combines theory and practice to cover the fundamentals in the processes of heating and cooling of air through coils and the key aspects in coil fluid piping systems, coils, and energy sources for the fluid in the coils.
Energy-Efficient Electrical Systems for Buildings, Second Edition offers systematic and practical approaches to design and analyze electrical distribution and utilization systems in buildings. It considers safety and energy efficiency, focusing on sustainability and resiliency, to design electrical distribution systems for buildings.
This book explains the power grid as a hierarchy made up of the transmission, distribution, and microgrid levels.Interfaces among these levels are explored to show how flexibility in power demand associated with residential batteries can be communicated through the entire grid to facilitate optimal power flow computations within the transmission grid.To realize this approach, the authors combine semi-definite optimal power flow with model-order reduction at the distribution level and with a new heuristic algorithm for stable power flow at the transmission level. To demonstrate its use, a numerical case study based on modified IEEE 9-bus and 33-bus systems for the transmission and distribution grid, respectively, is included.This book shows how exploiting the flexibility on the residential level improves the performance of the power flow with the transmission grid.
The book starts from the existed problems in fault analysis of the lumped-parameter circuit model. It firstly introduces the basic electromagnetic phenomenon, uniform transmission line guided electromagnetic waves, multi-conductor system guided electromagnetic waves, fault generated travelling waves; then it introduces series of the traveling waves based protections, which includes principle, technology and application in practical power grid; it also discusses the travelling waves based fault location and the travelling waves based fault feeder selector in China. It systemically reveals the essential features of the fault traveling wave and concludes the analytical solutions of the transient fault traveling waves and the modulus maxima representation of the dyadic wavelet transform of fault traveling waves. Finally, the book analyzes the acquisition of traveling waves and the sensor¿s characteristics. A unique fault travelling wave test device has been invented based on the theories of the book and will be applied in real systems.
This book provides a deep insight into recent achievements in synthesis, investigation, and applications of the low-dimensional chalcohalide nanomaterials. The large number of interesting phenomena occur in these compounds, including ferroelectric, piezoelectric, pyroelectric, electrocaloric, Seebeck, photovoltaic, and ferroelectric-photovoltaic effects. Furthermore, the outstanding photoelectrochemical, photocatalytic, and piezocatalytic properties of the chalcohalide nanomaterials have been revealed. Since many chalcohalide semiconductors possess both photoactive and ferroelectric properties, they are recognized as photoferroelectrics. It presents an overview of fabrication of chalcohalide nanomaterials using different methods: mechanical milling of bulk crystals, liquid-phase exfoliation, vapor phase growth, hydro/solvothermal methods, synthesis under ultrasonic irradiation, microwave synthesis, laser/heat-induced crystallization, electrospinning, successive ionic layer adsorption and reaction. The strategies of the chalcohalide nanomaterials processing for construction of functional devices are presented.The book describes solution processing for thin films preparation, spin-coating deposition of polymer composites, solution casting, films deposition via drop-casting, high pressure compression of nanowires into the bulk samples, pressure assisted sintering, and electric field assisted alignment of nanowires. The applications of the chalcohalide nanomaterials for mechanical/thermal energy harvesting and energy storage are presented. Major challenges and emerging trends in fabrication, characterization, and future applications of low-dimensional chalcohalide nanomaterials are discussed. A wealth of information for scholars, graduate students, and engineers involved in research of nanomaterials.
State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel.
Energy Systems Transition: Digitalization, Decarbonization, Decentralization, and Democratization provides a thorough multidisciplinary overview of the operation of modern green energy systems and examines the role of 4D energy transition in global decarbonization mitigation efforts for meeting long-term climate goals. Contributions present practical aspects and approaches with evidence from applications to real-world energy systems, offering in-depth technical discussions, case studies, and examples to help readers understand the methods, current challenges, and future directions. A hands-on reference to energy distribution systems, it is suitable for researchers and industry practitioners from different branches of engineering, energy, data science, economics, and operation research.
This book provides a thorough overview of the concept of whole energy systems and the role of vector-coupling technologies (VCTs) in meeting long-term decarbonization strategies. It is the first comprehensive reference that provides basic definitions and fundamental, applicable approaches to whole energy systems analysis and vector-coupling technologies in a multidisciplinary way. Whole Energy Systems presents practical methods with evidence from applications to real-world and simulated coupled energy systems. Sample analytical examples are provided to aid in the understanding of the presented methods. The book will provide researchers and industry stakeholders focused on whole energy systems, as well researchers and developers from different branches of engineering, energy, economics, and operation research, with state-of-the-art coverage and the latest developments in the field.
The book contains select proceedings of the International Conference on Smart Grid Energy Systems and Control (SGESC 2021). The proceedings is divided into 03 volumes, and this volume focuses on renewable energy towards the smart grid. It includes papers related to smart grid, renewable energy, its integration, and DERs in the network for better energy management and ancillary services. The book presents cutting-edge research in the emerging fields of micro, nano, and smart devices and systems from experts. Most of the contributors have built devices or systems or developed processes or algorithms in these areas. This book is a unique collection of chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.